فهرست مطالب

Cell Journal - Volume:21 Issue: 2, Summer 2019

Cell Journal (Yakhteh)
Volume:21 Issue: 2, Summer 2019

  • تاریخ انتشار: 1397/12/05
  • تعداد عناوین: 14
|
  • Huimei Wang, Arezoo Khoradmehr, Amin Tamadon Pages 103-114
    Major biological processes rely on the spatial organization of cells in complex, highly orchestrated three-dimensional (3D) tissues. Until the recent decade, most of information on spatial neural representation primarily came from microscopic imaging of “2D” (5-50 μm) tissue using traditional immunohistochemical techniques. However, serially sectioned and imaged tissue sections for tissue visualization can lead to unique non-linear deformations, which dramatically hinders scientists’ insight into the structural organization of intact organs. An emerging technique known as CLARITY renders large-scale biological tissues transparent for 3D phenotype mapping and thereby, greatly facilitates structure-function relationships analyses. Since then, numerous modifications and improvements have been reported to push the boundaries of knowledge on tissue clearing techniques in research on assembled biological systems. This review aims to outline our current knowledge on next-generation protocols of fast free-of-acrylamide clearing tissue (FACT) and passive CLARITY (PACT). The most important question is what method we should select for tissue clearing, FACT or PACT. This review also highlights how FACT differs from PACT on spanning multiple dimensions of the workflow. We systematically compared a number of factors including hydrogel formation, clearing solution, and clearing temperatures between free-acrylamide and acrylamide-based passive sodium dodecyl sulfate (SDS) tissue clearing and discussed negative effects of polyacrylamide on clearing, staining, and imaging in detail. Such information may help to gain a perspective for interrogating neural circuits spatial interactions between molecules and cells and provide guidance for developing novel tissue clearing strategies to probe deeply into intact organ.
    Keywords: Acrylamide, Imaging, Staining, Labeling, Three-Dimensional, Tissues
  • Ali Ehsanpour, Najmaldin Saki, Marziyeh Bagheri, Masumeh Maleki Behzad, Saeid Abroun Pages 115-123
    Microvesicles (MVs) are the smallest subclass of the extracellular vesicles (EVs) spontaneously secreted by the external budding from the cell membranes in physiologic and pathologic conditions. The MVs derived from leukemic cells (LCs) can be detected by the expression of specific cluster of differentiation (CD) markers indicating their cellular origin while they can transfer different agents such as microRNAs, cytokines, and chemokines. The secretion of these agents from MVs can affect the vital processes of LCs such as cell cycle, proliferation, differentiation, and apoptosis. According to the effects of MVs components on the vital processes of LCs, it has been postulated that a change in the expression of MVs might be involved in the progression and prognosis of leukemia. However, further studies are needed to confirm the association between the presence of MVs and their components with the prognosis of leukemia. It seems that the identification of the prognostic values and the application of them for the detection of MVs in leukemia can provide new therapeutic targets for monitoring the status of patients with leukemia.
    Keywords: CD Markers, Leukemia, microRNAs, Microvesicles, Prognosis
  • Fatemeh Shokraii, Maryam Moharrami, Nasrin Motamed, Maryam Shahhoseini, Mehdi Totonchi, Vahid Ezzatizadeh, Javad Firouzi, Pardis Khosravani, Marzieh Ebrahimi Pages 124-134
    Objective
    Cadherin-1 (CDH1) plays an important role in the metastasis, while expression of this protein is under control of epigenetic changes on its gene promoter. Therefore we evaluated both DNA methylation (DNAmet) and histone modification marks of CDH1 in prostate cancer stem like cells (PCSLCs).
    Materials and Methods
    In this experimental study, we isolated PCSLCs using cell surface marker and prostaspheroid formation, respectively. The cells isolated from both methods were characterized and then the levels of H3K4me2, H3K27me3, H3K9me2/3 and H3K9ac as well as DNAmet were assessed in CDH1 promoter of the isolated cells.
    Results
    The CD44+ CD49hi cells were not validated as PCSLCs. However, prostaspheres overexpressed stemness related genes and had higher ability of invasion potential, associated with reduction in CDH1 expression. Epigenetic status analysis showed that CDH1 promoter was hypo-methylated. Histone modifications of H3K9ac and H3K4me3 were significantly reduced, in parallel with an increased level of H3K27me3.
    Conclusion
    Our results suggest that slight decrease of DNAmet of the CpG island in CDH1 promoter does not significantly contribute to the change of CDH1 expression. Therefore, histone modifications are responsible in repressing CDH1 in PCSLCs.
    Keywords: Cancer Stem Cells, CDH1, Histone Modification, Methylation, Prostate Cancer
  • Fatemeh Firouzabadi, Shahrbanoo Oryan, Mohammad Hasan Sheikhha, Seyed Mehdi Kalantar, Ameneh Javed Pages 135-142
    Objective
    Today, in clinical trials, we suffer from the lack of effective methods with minimal side effects to deliver medication. Thus, efforts to identify better conditions for delivery of biomedical drugs seem necessary. The purpose of this study was to design a new liposomal formula for transportation of microRNA in osteosarcoma.
    Materials and Methods
    In this experimental study, several liposomal formulations were synthesized. Physical and chemical parameters, including size, zeta potential, polydispersity index, long-term stability of the liposomal-microRNA complex and the amount of miR-143 loading in liposome based nano-vesicles were optimized using different techniques. Similarly, the effect of free and encapsulated microRNA toxicity were investigated and compared in a human bone osteosarcoma cell line, named SaOs-2.
    Results
    In this study, we could produce a novel and optimized formulation of cationic PEGylated liposomal microRNA for gene delivery. The present synthesized microRNA lipoplex system was non-agglomerated. The system remained stable after four months and miR-143 leakage was not observed by performing gel electrophoresis. The microRNA lipoplex could enhance conduction of the loaded miR-143, and it also showed good biocompatibility to the healthy cells.
    Conclusion
    The PEGylated microRNA lipoplex system had a high potential for the systematic migration of miR-143 and it could improve intracellular stability of the released microRNA.
    Keywords: Cell Survival, Liposome, microRNA, Osteosarcoma
  • Vahid Molla Kazemiha, Shahram Azari, Mahdi Habibi, Anbouhi, Amir Amanzadeh, Shahin Bonakdar, Mohammad Ali Shokrgozar, Reza Mahdian Pages 143-149
    Objective
    Mycoplasmas spp. is among major contaminants of eukaryotic cell cultures. They cause a wide range of problems associated with cell culture in biology research centers or biotechnological companies. Mycoplasmas are also resistant to several antibiotics. Plasmocin™ has been used to treat cell lines but Plasmocin™-resistant strains have been reported. InvivoGen has developed a new anti-Mycoplasma agent called Plasmocure™ in order to eliminate resistant Mycoplasma contamination. The aim of this study was the selection of the best antibiotics for treatment of mycoplasma in cell cultures.
    Materials and Methods
    In this experimental study, a total of 100 different mammalian cell lines contaminated with different Mycoplasma species were evaluated by microbiological culture (as the gold standard method), indirect DNA fluorochrome staining, enzymatic (MycoAlert™), and universal or species-specific polymerase chain reaction (PCR) detection methods. In this study, animal and human cell lines available in National Cell Bank of Iran, were treated with Plasmocure™. The treatment efficacy and cytotoxicity of Plasmocure™ were compared with those of commonly used antibiotics such as BM- cyclin, Plasmocin™, MycoRAZOR™, sparfloxacin and enrofloxacin.
    Results
    Plasmocure™ is comprised of two antibiotics that act through various mechanisms of action than those in Plasmocin™. Two-week treatment with Plasmocure™ was enough to completely eliminate Mycoplasma spp. A moderate toxicity was observed during Mycoplasma treatment with plasmocure™; But, after elimination of Mycoplasma, cells were fully recovered. Mycoplasma infections were eliminated by Plasmocure™, BM-cyclin, Plasmocin™, MycoRAZOR™, sparfloxacin and enrofloxacin. However, the outcome of the treatment process (i.e. the frequency of complete cure, regrowth or cell death) varied among different antibiotics.
    Conclusion
    The highest number of cured cell lines was achieved by using Plasmocure™ which also had the lowest regrowth rate after a period of four months. As a conclusion; Plasmocure™ might be considered an effective antibiotic to treat Mycoplasma infections in mammalian cell cultures especially for precious or vulnerable cells.
    Keywords: Cell Culture, Cytotoxicity, Mycoplasma, Treatment
  • Mohammad Ali Khalilifar, Mohamadreza Baghaban Eslaminejad, Mohammad Ghasemzadeh, Samaneh Hosseini, Hossein Baharvand Pages 150-160
    Objective
    Systematic studies indicate a growing number of clinical studies that use mesenchymal stem cells (MSCs) for the treatment of cartilage lesions. The current experimental and preclinical study aims to comparatively evaluate the potential of MSCs from a variety of tissues for the treatment of cartilage defect in rabbit’s knee which has not previously been reported.
    Materials and Methods
    In this experimental study, MSCs isolated from bone marrow (BMMSCs), adipose (AMSCs), and ears (EMSCs) of rabbits and expanded under in vitro culture. The growth rate and differentiation ability of MSCs into chondrocyte and the formation of cartilage pellet were investigated by drawing the growth curve and real-time polymerase chain reaction (RT-PCR), respectively. Then, the critical cartilage defect was created on the articular cartilage (AC) of the rabbit distal femur, and MSCs in collagen carrier were transplanted. The studied groups were as the control (only defect), sham (defect with scaffold), BMMSCs in the scaffold, EMSCs in the scaffold, and EMSCs in the scaffold with cartilage pellets. Histological and the gene expression analysis were performed following the transplantation.
    Results
    Based on our comparative in vitro investigation, AMSCs possessed the highest growth rate, as well as the lowest chondrogenic differentiation potential. In this context, MSCs of the ear showed a significantly higher growth rate and cartilage differentiation potential than those of bone marrow tissue (P<0.05). According to our in vivo assessments, BMMSC- and EMSC-seeded scaffolds efficiently improved the cartilage defect 4 weeks post-transplantation, while no improvement was observed in the group contained the cartilage pellets.
    Conclusion
    It seems that the ear contains MSCs that promote cartilage regeneration as much as the conventional MSCs from the bone marrow. Considering a high proliferation rate and easy harvesting of MSCs of the ear, this finding could be of value for the regenerative medicine.

    Keywords: Articular Cartilage, Mesenchymal Stem Cells, Rabbit, Transplantation
  • Qing Liu, Jiang Du, Jinyu Fan, Wenqiang Li, Weiyun Guo, Huigen Feng, Juntang Lin Pages 161-168
    Objective
    Schizophrenia (SZ) is a mental disorder in which psychotic symptoms are the main problem. The pathogenesis of SZ is not fully understood, partly because of limitations in current disease models and technology. The development of induced pluripotent stem cell (iPSC) technology has opened up the possibility of elucidating disease mechanisms in neurodegenerative diseases. Here, we aimed to obtain iPSCs from peripheral blood mononuclear cells (PBMCs) of normal and schizophrenic individuals and analyze the inflammatory response in these iPSCs.
    Materials and Methods
    In this experimental study, we isolated PBMCs from whole blood of healthy individuals and SZ patients and reprogrammed them into iPSCs by transfection of recombinant lentiviruses that contained Yamanaka factors (Oct4, Sox2, Klf4 and c-Myc). We calculated the numbers of iPSC clones and stained them with alkaline phosphatase (ALP), Nanog, SSEA4, Nestin, Vimentin, and AFP to confirm their efficiency and pluripotency. The iPSCs were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) for the expressions of inflammatory factors.
    Results
    iPSCs from schizophrenic patients (SZ-iPSCs) exhibited typical morphology and highly expressed pluripotent markers. These iPSCs retained their normal karyotype and differentiated in vitro to form embryoid bodies (EBs) that expressed markers of all 3 germ layers. However, iPSCs from the SZ-iPSCs group had a weak capacity to differentiate into ectoderm compared to the normal iPSCs (Con-iPSC). An elevated, stronger inflammatory response existed in iPSCs from schizophrenic individuals.
    Conclusion
    We successfully obtained iPSCs from PBMCs of schizophrenic patients without genetic operation and analyzed the expressions of pluripotent markers and inflammatory factors between the Con-iPSC and SZ-iPSC groups. Taken together, our results may assist to explain the pathogenesis of SZ and develop new strategies for clinical diagnosis and treatment.

    Keywords: Induced Pluripotent Stem Cell, Peripheral Blood Mononuclear Cells, Pluripotency, Reprogramming, Schizophrenia
  • Dian Dayer, Mohammad Reza Tabandeh, Eskandar Moghimipour, Mahmoud Hashemi Tabar, Ata Allah Ghadiri, Elham Allah Bakhshi, Mahmoud Orazizadeh, Mohammad Ali Ghaffari Pages 169-178
    Objective
    We proposed a novel differentiation method for the efficient differentiation of adipose-derived mesenchymal stem cells (ADMSCs) into functional insulin-producing cells (IPCs) based on MafA overexpression.
    Materials and Methods
    In this experimental study, a eukaryotic expression vector containing MafA [MafA/pcDNA3.1(+)] was constructed and purified. ADMSCs were differentiated into IPCs. ADMSCs were assigned in two groups including control (C), and the MafA overexpressed (MafA+) groups. The ADMSCs were transfected by MafA/pcDNA 3.1(+) at day 10 of the differentiation. Differentiated cells were analyzed for the expression of multiple β cell specific genes (Nkx2.2, Ngn3, Isl-1, Pdx1, MafA, Nkx6.1, and Insulin) using real-time polymerase chain reaction (PCR). The insulin secretion potency of the differentiated cells in response to glucose exposure was also determined using an enzyme-linked immunosorbent assay (ELISA) method and Dithizone (DTZ) staining. The IPCs from the control manipulated group, and un-differentiated ADMSCs group were transplanted to streptozotocin (STZ)-diabetic rats. Rats were monitored for blood glucose and insulin concentration.
    Results
    The results revealed that ADMSCs were successfully differentiated into IPCs through the 14 day differentiation protocol. The expression of β-cell specific genes in MafA+ IPCs was higher than in control cells. Glucose-induced insulin secretion after the exposure of IPCs to glucose was higher in MafA+ group than the control group. The STZ- diabetic rats showed an ability to secrete insulin and apparent hyperglycemic condition adjustment after transplantation of the control IPCs. The mean insulin concentration of diabetic rats that were transplanted by manipulated IPCs was significantly higher than ADMSCs-transplanted rats; however, no effect was observed in the concentration of blood glucose.
    Conclusion
    The overexpression of MafA can be used as a novel promising approach for the efficient production of IPCs from ADMSCs in vitro. However, the future therapeutic use of the MafA+ IPCs in diabetic animals needs further investigations.
    Keywords: Adipose Tissue, Insulin-Producing Cells, MafA, Mesenchymal Stem Cells
  • Parisa Mashayekhi, Mehrdad Noruzinia, Sirous Zeinali, Sepideh Khodaverdi Pages 179-185
    Objective
    Stem cell issue is a strong theory in endometriosis pathogenesis. It seems that endometriotic mesenchymal stem cells (MSCs) show different characteristics compared to the normal MSCs. Determined high proliferation and low differentiation/ decidualization potential of endometriotic MSCs could be accompanied by their microRNAs deregulation influencing their fate and function. In this study for the first time, we evaluated the expression of miR-200b, miR-145, and let7b in endometriotic compared to non-endometriotic MSCs. These microRNAs are involved in biological pathways related to proliferation and differentiation of stem cells. Their aberrant expressions can disturb the proliferation/ differentiation balance in stem cells, altering their function and causing various diseases, like endometriosis.
    Materials and Methods
    In this experimental study, MSCs were isolated from three endometriotic and three non- endometriotic eutopic endometrium, followed by their characterization and culture. Expression of miR-200b, miR-145, and let-7b was ultimately analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR).
    Results
    We found that the expression of miR-200b was up-regulated (P<0.0001) whereas the expression of miR- 145 and let-7b was down-regulated (P<0.0001) in endometriotic MSCs in comparison with non-endometriotic normal controls.
    Conclusion
    Proliferation and differentiation are important dynamic balanced biological processes, while in equillibrium, they determine a healthy stem cell fate. It seems that they are deregulated in endometriotic MSCs and change their function. miR-200b, miR-145, and let7b are deregulated during endometriosis and they have pivotal roles in the modulating proliferation and differentiation of stem cells. We found up-regulation of miR-200b and down-regulation of miR-145 and let-7b in endometriotic MSCs. These changes can increase self-renewal and migration, while decreasing differentiation of endometriotic MSCs. Our achievements emphasize previous findings on the importance of proliferation/ differentiation balance in MSCs and clarify the role of microRNAs as main players in faulty endometriotic stem cells development.
    Keywords: Cell Differentiation, Cell Self-Renewal, Mesenchymal Stromal Cells, microRNAs
  • Hossein Azizi, Hatef Ghasemi Hamidabadi, Thomas Skutella Pages 186-193
    Objective
    Spermatogonial stem cells (SSCs) provide the cellular basis for sperm production transforming the male’s genetic information to the next generation. We aimed to examine the effect of different feeder layer on proliferation of SSCs.
    Materials and Methods
    In this experimental study, we compared the in vitro effects of the co-culture of mouse SSCs with mouse embryonic fibroblasts (MEFs), sandos inbred mice (SIM) embryo-derived thioguanine- and ouabain- resistant (STO) feeders, and neonate and adult testicular stroma cell (TSC) feeders on the efficiency of mouse SSC proliferation and colony formation. Cells were cultivated on top of MEFs, STO, and neonate and adult TSCs feeder layers for 30 days. The number and diameter of colonies and also the number of cells were evaluated during day 7, 15, 25, and 30 of culture. The mRNA expression of germ cells and somatic cells were analyzed.
    Results
    In our study, we observed a significant difference in the proliferation rates and colony size of SSCs among the groups, especially for MEFs (P<0.05). SSCs can proliferate on MEFS, but not on STO, neonate or adult TSCs. Using immunocytochemistry by KI67 the proliferative activities of SSC colonies on MEFs were confirmed. The results of Fluidigm real-time polymerase chain reaction (RT-PCR) showed a high expression of the germ cell genes the promyelocytic leukemia zinc finger protein (PLZF), deleted in azoospermia-like (DAZL), octamer-binding transcription factor 4 (OCT4), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4 or VASA) in SSCs, and a low expression of these genes in the feeder layers. Furthermore, we observed a higher expression of vimentin and integrin-B1 in feeder layers than in SSCs (P<0.05).
    Conclusion
    Based on the optimal effect of MEFs for better colonization of SSCs, these feeder cells seem to be appropriate candidates for SSC cultures prior to transplantation. Therefore, it is suggested using these feeder cells for SSC cultivation.
    Keywords: Feeder Layers, Proliferation, Spermatogonial Stem Cells
  • Pouria HosseinNia, Mehdi Hajian, Farnoosh Jafarpour, Sayed Morteza Hosseini, Mojtaba Tahmoorespur, Mohammad Hossein Nasr, Esfahani Pages 194-203
    Objective
    Two critical points of early development are the first and second lineage segregations, which are regulated by a wide spectrum of molecular and cellular factors. Gene regulatory networks, are one of the important components which handle inner cell mass (ICM) and trophectoderm (TE) fates and the pluripotency status across different mammalian species. Considering the importance of goats in agriculture and biotechnology, this study set out to investigate the dynamics of expression of the core pluripotency markers at the mRNA and protein levels.
    Materials and Methods
    In this experimental study, the expression pattern of three pluripotency markers (Oct4, Nanog and Sox2) and the linage specific markers (Rex1, Gata4 and Cdx2) were quantitatively assessed in in vitro matured (MII) oocytes and embryos at three distinctive stages: 8-16 cell stage, day-7 (D7) blastocysts and D14 blastocysts. Moreover, expression of Nanog, Oct4, Sox2 proteins, and their localization in the goat blastocyst was observed through immunocytochemistry.
    Results
    Relative levels of mRNA transcripts for Nanog and Sox2 in D3 (8-16 cell) embryos were significantly higher than D7 blastocysts and mature oocytes, while Oct4 was only significantly higher than D7 blastocysts. However, the expression pattern of Rex1, as an epiblast linage marker, decreased from the oocyte to the D14 stage. The expression pattern of Gata4 and Cdx2, as extra embryonic linage markers, also showed a similar trend from oocyte to D3 while their expressions were up-regulated in D14 blastocysts.
    Conclusion
    Reduction in Nanog, Oct4, Sox2 mRNA transcription and a late increase in extra embryonic linage markers suggests that the developmental program of linage differentiation is retarded in goat embryos compared to previously reported data on mice and humans. This is likely related to late the implantation in goats.

    Keywords: Blastocyst, Embryo, Goat, Oocyte
  • Tahereh Zare, Reza Fardid, Samaneh Naderi Pages 204-209
    Objective
    The use of nanoscale particles, for instance silver nanoparticles (Ag NPs) has considerably increased recently. Since Ag NPs can be transmuted into silver ions; the toxicity and genotoxicity of these NPs along with other external factors such as ultraviolet type C (UVC) irradiation must be evaluated. In the present study, the aim was to investigate the genotoxic effects Ag NPs and UVC co-exposure on human lymphoblastoid TK6 cells.
    Materials and Methods
    In this experimental study, Ag NPs (~20 nm) were purchased from US Research Nanomaterials Inc. and H2AX gene expression was evaluated using quantitative real time polymerase chain reaction (qRT-PCR), 1 and 24 hours post Ag NPs and UVC treatment.
    Results
    Results showed that treatment of TK6 cells with different Ag NP concentrations without exposure to UVC can reduce H2AX gene expression, but treatment of these cells with Ag NPs in combination UVC irradiation can reduce viability that leads to a synergistic increase in the amount of H2AX gene expression.
    Conclusion
    According to our findings, Ag NPs can act to sensitize cells to UVC radiation when used for cancer treatment. So, combination of Ag NPs and UVC irradiation could be used in radiotherapy.
    Keywords: Genotoxicity, H2AX, Nanoparticles, Silver, Ultraviolet
  • Abbas Majdi Seghinsara, Hamed Shoorei, Mohammad Mehdi Hassanzadeh Taheri, Arash Khaki, Majid Shokoohi, Moloud Tahmasebi, Amir Afshin Khaki, Hossein Eyni, Sadegh Ghorbani, Khadijeh Riahi Rad, Hossein Kalarestaghi, Leila Roshangar Pages 210-219
    Objective
    Panax ginseng is a popular traditional herb that has been used in complementary and alternative medicine in eastern Asia, and it possesses pharmacologically active compounds like ginsenosides (GSs). This study aimed to investigate the impact of Panax ginseng extract (PGE) at different concentrations on in vitro follicular function and development in a three-dimensional (3D) culture system fabricated using sodium alginate after 12 days of culture.
    Materials and Methods
    In this experimental study, preantral follicles (n=661) were mechanically isolated from the ovaries of 14-day-old female NMRI mice using 29-gauge insulin syringes. Follicles were individually capsulated within sodium alginate, and divided into four groups including control and experimental groups 1, 2, and 3. Then, they were cultured for 12 days in the medium supplemented with different concentrations of PGE (0, 50, 100, and 500 µg/ mL, for control groups and groups 1, 2 and 3, respectively). At the end of the culture period, the mean diameter and maturation of follicles, follicular steroid production, mRNA expression level of proliferating cell nuclear antigen (PCNA) and follicle stimulating hormone receptor (FSH-R), and reactive oxygen species (ROS) levels in collected metaphase-II (MII) oocytes were determined.
    Results
    The mean diameter of follicles in group 2 was significantly increased as compared to other groups (P<0.001). The percentages of the survival and maturation rate and levels of secreted hormones were higher in group 2 than the other groups (P<0.05). Follicles cultured in the presence of PGE 100 µg/mL had higher levels of proliferation cell nuclear antigen (PCNA) and follicle stimulating hormone receptor (FSH-R) mRNA expression in comparison to other groups (P<0.05). Moreover, oocytes collected from groups 2 and 3 had lower levels of ROS as compared to other groups (P<0.05).
    Conclusion
    Our results suggest that PGE at the concentration of 100 µg/mL induces higher follicular function and development in the 3D culture system.
    Keywords: Gene Expression, Ovarian Follicle, Panax ginseng, Steroid Hormone
  • Soheila Pourkhodadad, Shahrbanoo Oryan, Gholamreza Kaka, Seyed Homayoon Sadraei Pages 220-225
    Objective
    Traumatic spinal cord injury (SCI) is considered one of the most devastating injuries leading to neuronal disruption. Olfactory ensheathing cells (OECs) and minocycline have been shown to promote locomotor function after spinal cord injury. In this study, we have tested the efficacy of combined treatment with minocycline and OECs after contusive spinal cord injury.
    Materials and Methods
    In this experimental study, adult female Wistar rats were randomly divided into five groups. Rats received an intraperitoneal injection of minocycline immediately after SCI, and then 24 hours after the injury. Transplantations were performed 7 days after the injury. Functional recovery was evaluated using the Basso, Beattie and Bresnahan scale (BBB). After that, the animals were sacrificed, and T11 segment of the spinal cord was removed after 5 weeks, and then used for histopathological, immunohistochemical, and biochemical assessments. Western blot analysis was applied to determine the protein expression of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL1β) and caspase3.
    Results
    The results of this study showed that the combination of OECs graft and minocycline reduced the functional deficits and diminished cavitation and astrogliosis in spinal tissue. The analysis of protein expression by western blotting revealed that minocycline treatment along with OECs transplantation further decreased the level of IL-1β, TNF-α, caspase-3, and the oxidative stress as compared with when minocycline or OECs transplantation was used alone.
    Conclusion
    The combinatory treatment with OECs graft and minocycline induced a more effective response to the repair of spinal cord injury, and it is considered a therapeutic potential for the treatment of SCI.

    Keywords: Inflammation, Minocycline, Olfactory Ensheathing Cells, Oxidative Stress, Spinal Cord Injury