فهرست مطالب

Cell Journal - Volume:20 Issue: 3, Autumn 2018

Cell Journal (Yakhteh)
Volume:20 Issue: 3, Autumn 2018

  • تاریخ انتشار: 1397/03/19
  • تعداد عناوین: 21
|
  • Bahar Saberzadeh-Ardestani, Razieh Karamzadeh, Mohsen Basiri, Ensiyeh Hajizadeh-Saffar, Aisan Farhadi, A.M. James Shapiro, Yaser Tahamtani *, Hossein Baharvand * Pages 294-301
    Type 1 diabetes mellitus (T1DM) is a disease where destruction of the insulin producing pancreatic beta-cells leads to increased blood sugar levels. Both genetic and environmental factors play a part in the development of T1DM. Currently, numerous loci are specified to be the responsible genetic factors for T1DM; however, the mechanisms of only a few of these genes are known. Although several environmental factors are presumed responsible for progression of T1DM, to date, most of their mechanisms remain undiscovered. After several years of hyperglycemia, late onsets of macrovascular (e.g., cardiovascular) and microvascular (e.g., neurological, ophthalmological, and renal) complications may occur. This review and accompanying figures provides an overview of the etiological factors for T1DM, its pathogenesis at the cellular level, and attributed complications.
    Keywords: Diabetes Complication_Environment_Etiology_Genetic_Type 1 Diabetes Mellitus
  • Suresh Palamadai Krishnan * Pages 302-311
    Breast cancer (BC) is a widely prevalent form of neoplasia in women with fairly alarming mortality statistics. This aspect may be attributed, in part, to the current spatial and temporal heterogeneity-based limitations in therapies with possible recurrence of this tumour at primary and/or secondary sites. Such an extensive phenotypic heterogeneity in breast cancer is unlikely to be adequately or completely comprehended by an immuno-histopathology-based classification alone. This finding has warranted research and development in the area of microarray-based methods (i.e. transcriptomic and proteomic chips) for an improved molecular classification of this complex and heterogeneous tumour. Further, since epigenetics can also be an important determinant in terms of diagnosis, prognosis and therapy, this review provides an insight into the molecular portrait of BC in genetic and epigenetic terms. Specifically, the roles of characteristic DNA and histone-based modifications as well as mi-RNA- based alterations have been discussed with specific examples. Also, their involvement in epithelial mesenchymal transition (EMT) processes in cancer stem cells (CSCs) has been outlined. Last but not least, the salient aspects and the advantages of ex vivo/in vitro 3D model systems in recapitulating several aspects of BC tumour (particularly the architecture as well as the apico-basal polarity) are mentioned. This review hopes to provide not only an improved and updated understanding of the epigenetics of breast cancer, but to also elaborate on tumour model development/refinement, biomarker evaluation, drug resistance and test of individual drugs or drug combinations and drug delivery systems.
    Keywords: Breast Cancer, Epigenetics, Heterogeneity, In Vitro
  • G., Ouml, Khan Terzio, Lu, Ouml, Zlem TUrksoy *, Ouml, Mer Faruk Bayrak Pages 312-317
    Objective
    Cancer stem cells (CSCs) have important roles in survival and chemoresistance. These cells are commonly recognized with CD44 and CD24 markers. In this study, we aimed to analyze the effects of mtDNA content on cell surface positivity for anti-CD24 and anti-CD44 antibodies and chemoresistance level in AGS, HGC-27 and MKN-45 gastric cancer (GC) cell lines and to determine a setpoint for mtDNA copy for each cell line.
    Materials And Methods
    In this experimental study, we initially decreased mtDNA levels in AGS, HGC-27 and MKN-45 by EtBr treatment. This depletion was confirmed with quantitative polymerase chain reaction (qPCR). Changes in cell surface positivity for anti-CD24 and anti-CD44 antibodies in control and mtDNA-depleted AGS, HGC-27 and MKN-45 were then analyzed with flow cytometry. Changes in chemoresistance (5-FU and cisplatin) were analyzed for all cell lines. The relationship between mtDNA content and cell surface positivity for CD24 and CD44 markers was examined.
    Results
    The highest CD44 positivity was found in HGC-27 and MKN-45 ρlow cells which had 33-40% mtDNA content of control cells, however, CD24 positivity decreased with mtDNA depletion in all cell lines. The highest chemoresistance levels were found in all ρlow cells. mtDNA-recovered (i.e. reverted) HGC-27 and MKN-45 cells partially maintained their increased chemoresistance while reverted AGS cells did not maintain an increased level of chemoresistance.
    Conclusion
    mtDNA depletion triggers chemoresistance in cancer cell lines and is correlated with increase and decrease of CD44 and CD24 positivity respectively in HGC-27 and MKN-45 GC cell lines. A mtDNA content above or below the identified setpoint (33-40% of that in control cells), results in the decrease of CD44 positivity and chemoresistance levels.
    Keywords: Antineoplastic Drug Resistance, Gastric Cancer, Mitochondria, Mitochondrial DNA
  • Reza Ranjbaran, Mahin Nikogoftar Zarif, Sedigheh Sharifzadeh, Habibollah Golafshan, Ali Akbar Pourfathollah * Pages 318-325
    Objective
    Hemoglobin F (HbF) augmentation is considered a clinically beneficial phenomenon in β-hemoglobinopathies. Prevention of γ-globin gene silencing, inspired by the hereditary persistence of fetal hemoglobin, may be a suitable strategy to upregulate HbF expression in these patients. Therefore, our objective was to assess the potential feasibility of induced -117 G→A substitution in HBG promoter in prevention of transcriptional silencing of the γ-globin.
    Materials And Methods
    In this experimental study, human peripheral blood-derived hematopoietic stem cells (HSCs) and the K562 cell line were differentiated to erythroid cells. Erythroid maturation was examined using cell morphology parameters and flow cytometry analysis of CD235a expression. A synthesised chimeraplast was transfected to differentiating cells. The efficiency of chimeraplast delivery into target cells was assessed by flow cytometry. Restriction-fragment length polymorphism and DNA sequencing verified oligonucleotide-directed mutagenesis. Gene conversion frequency and globin genes expression was quantified through Allele specific-quantitaive polymerase chain reaction (AS-qPCR) and quantitative-PCR respectively.
    Results
    Increase in CD235a-expressing cells along with observations made for different stages of erythroid maturation confirmed erythroid differentiation in HSCs and K562 cells. γ to β-globin gene switching was estimated to be on days 18-21 of HSC differentiation. Flow cytometry analysis showed that more than 70% of erythroid progenitor cells (EPCs) were transfected with the chimeraplast. The highest gene conversion efficiency was 7.2 and 11.1% in EPCs and K562 cells respectively. The induced mutation led to a 1.97-fold decrease in β/γ-globin gene expression in transfected EPCs at the experimental end point (day 28) whereas, due to the absence of β-globin gene expression following K562 differentiation, this rate was not evaluable.
    Conclusion
    Our results suggest the effectiveness of chimeraplasty in induction of the mutation of interest in both EPCs and K562 cells. We also demonstrate that the single nucleotide promoter variant was able to significantly inhibit γ-globin gene silencing during erythroid differentiation.
    Keywords: Erythroid Progenitor Cells, Gene Silencing, Oligonucleotide, Directed Mutagenesis
  • Jingming Zhao, Wei Cheng, Xigang He, Yanli Liu, Ji Li, Jiaxing Sun, Jinfeng Li, Fangfang Wang, Yufang Gao * Pages 326-332
    Objective
    The aim of this study was to identify the molecular subtypes of chronic obstructive pulmonary disease (COPD) and to prioritize COPD candidate genes using bioinformatics methods.
    Materials And Methods
    In this bioinformatics study, the gene expression dataset GSE76705 (including 229 COPD samples) and known COPD-related genes (candidate genes) were downloaded from the Gene Expression Omnibus (GEO) and the Online Mendelian Inheritance in Man (OMIM) databases respectively. Based on the expression values of the candidate genes, COPD samples were divided into molecular subtypes through hierarchical clustering analysis. Candidate genes were accordingly allocated into the defined molecular subtypes and functional enrichment analysis was undertaken. Pathway deviation scores were then analyzed, followed by the analysis of clinical indicators (FEV1, FEV1/FVC, age and gender) of COPD patients in each subtype, and prediction models were constructed. Furthermore, the gene expression dataset GSE71220 was used to bioinformatically validate our results.
    Results
    A total of 213 COPD-related genes were identified, which divided samples into three subtypes based on the gene expression values. After intersection analysis, 160 common genes including transforming growth factor β1 (TGFB1), epidermal growth factor receptor (EGFR) and interleukin 13 (IL13) were obtained. Functional enrichment analysis identified 22 pathways such as ‘hsa04060: cytokine-cytokine receptor interaction pathways, ‘hsa04110: cell cycle’ and ‘hsa05222: small cell lung cancer’. Pathways in subtype 2 had higher deviation scores. Furthermore, three receiver operating characteristic (ROC) curves (accuracies >80%) were constructed. The three subtypes in COPD samples were also identified in the validation dataset GSE71220.
    Conclusion
    COPD may be further subdivided into several molecular subtypes, which may be useful in improving COPD therapy based on the molecular subtype of a patient.
    Keywords: Chronic Obstructive Pulmonary Disease, Pathway, Subtype
  • Fatemeh Bahreini, Massoud Houshmand, Mohammad Hossein Modarressi, Seyed Mohammad Akrami * Pages 333-339
    Objective
    Pompe disease (PD) is a progressive neuromuscular disorder that is caused by glucosidase acid alpha (GAA) deleterious mutations. Mitochondrial involvement is an important contributor to neuromuscular diseases. In this study the sequence of MT-ATP 6/8 and Cytochrome C oxidase I/II genes along with the expression levels of the former genes were compared in classic and non-classic patients.
    Materials And Methods
    In this case-control study, the sequence of MT-ATP 6/8 and Cytochrome C oxidase was analyzed by polymerase chain reaction (PCR)-Sanger sequencing and expression of MT-ATP genes were quantified by real time-PCR (RT-PCR) in 28 Pompe patients. The results were then compared with 100 controls. All sequences were compared with the revised Cambridge reference sequence as reference.
    Results
    Screening of MT-ATP6/8 resulted in the identification of three novel variants, namely T9117A, A8456C and A8524C. There was a significant decrease in MT-ATP6 expression between classic (i.e. adult) and control groups (P=0.030). Additionally, the MT-ATP8 expression was significantly decreased in classic (P=0.004) and non-classic (i.e. infant) patients (P=0.013). In total, 22 variants were observed in Cytochrome C oxidase, five of which were non- synonymous, one leading to a stop codon and another (C9227G) being a novel heteroplasmic variant. The A8302G in the lysine tRNA gene was found in two brothers in a pedigree, while a T7572C variant in the aspartate tRNA gene was observed in two brothers in another pedigree.
    Conclusion
    The extent of mitochondrial involvement in the classic group was more significant than in the non-classic form. Beside GAA deleterious mutations, it seems that mtDNA variants have a secondary effect on PD. Understanding, the role of mitochondria in the pathogenesis of Pompe may potentially be helpful in developing new therapeutic strategies.
    Keywords: Alpha, Glucosidase, Cytochrome, C Oxidase, Mitochondria, Pompe
  • Anna Minaidou, Paschalis Nicolaou, Kyproula Christodoulou * Pages 340-347
    Objective
    Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections.
    Materials And Methods
    In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued.
    Results
    A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology.
    Conclusion
    Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype.
    Keywords: Cell Growth, LRSAM1, RING Domain
  • Malihe Nakhaeifard, Maryam Haji Ghasem Kashani *, Iran Goudarzi, Arezou Rezaei Pages 348-354
    Objective
    Adipose derived stem cells (ASCs) secrete numerous neurotrophic factors and cytokines in conditioned medium (CM), which protect neurons by its antioxidative and trophic effects. This research assesses the neuroprotective effect of ASC- CM on neurotrophins genes expressions and tyrosine hydroxylase positive (TH) cell density in male Wistar rats lesioned by 6-hydroxydopamine (6-OHDA).
    Materials And Methods
    In this experimental study, the groups consisted of lesioned and sham rats with unilateral injections of 20 µg of 6-OHDA neurotoxin and phosphate buffered saline (PBS) into the striatum, respectively. Another groups received intravenous injections of 3×106 cells (ASCs group), 500 µl of CM (ASC-CM group) or medium [α-minimal essential medium (α-MEM) group)]. All rats underwent evaluations with the rotarod and apomorphine-induced rotation tests at 2, 4, 6, and 8 weeks post-injection. At 8 weeks we sacrificed some of the animals for real-time polymerase chain reaction (PCR) analysis, and evaluation of TH燩 counts.
    Results
    We observed a significant decrease in contralateral turns to the lesions in the ASCs and ASC-CM groups compared to the neurotoxin lesioned or α-MEM groups at 8 weeks post transplantation. Cell and CM- injected rats showed a significant increase of staying on the rotarod compared to the lesion or α-MEM groups. Cell and CM-treated rats showed significant increases in the NGF and NT3 genes, respectively, compared with the lesion group. Both treated groups showed significant increases in BDNF gene expression and TH cell density.
    Conclusion
    The results suggested that ASCs and ASC-CM protected dopaminergic neurons through the expressions of neurotrophin genes.
    Keywords: Conditioned Medium, Dopaminergic Neurons, Parkinson's Disease
  • Zahra Ghasemi, Nima Naderi, Amir Shojaei, Nooshin Ahmadirad, Mohammad Reza Raoufy, Javad Mirnajafi-Zadeh * Pages 355-360
    Objective
    Electrical low frequency stimulation (LFS) is a new therapeutic method that moderates hyperexcitability during epileptic states. Seizure occurrence is accompanied by some changes in action potential (AP) features. In this study, we investigated the inhibitory action of LFS on epileptiform activity (EA) induced-changes in AP features in hippocampal CA1 pyramidal neurons.
    Materials And Methods
    In this experimental study, we induced EA in hippocampal slices by increasing the extracellular potassium (K) concentration to 12 mM. LFS (1 Hz) was applied to the Schaffer collaterals at different pulse numbers (600 and 900) at the beginning of the EA. Changes in AP features recorded by whole-cell patch clamp recording were compared using phase plot analysis.
    Results
    Induction of EA depolarized membrane potential, decreased peak amplitude, as well as the maximum rise and decay slopes of APs. Administration of 1 Hz LFS at the beginning of EA prevented the above mentioned changes in AP features. This suppressive effect of LFS depended on the LFS pulse number, such that application of 900 pulses of LFS had a stronger recovery effect on AP features that changed during EA compared to 600 pulses of LFS. The constructed phase plots of APs revealed that LFS at 900 pulses significantly decreased the changes in resting membrane potential (RMP), peak amplitude, and maximum rise and decay slopes that appeared during EA.
    Conclusion
    Increasing the numbers of LFS pulses can magnify its inhibitory effects on EA-induced changes in AP features.
    Keywords: Action Potential, Brain Stimulation, Hippocampus, Rat
  • Azam Samadian, Mahdi Hesaraki, Sepideh Mollamohammadi, Behrouz Asgari, Mehdi Totonchi *, Hossein Baharvand * Pages 361-368
    Objective
    Dual inhibition of mitogen-activated protein kinase (MAPK) kinase (also known as MEK) and transforming growth factor β (TGFβ) type I receptors by PD0325901 and SB431542, known as R2i has been introduced as a highly efficient approach to the generation of mouse embryonic stem cells (ESC). In the present study, we investigated the molecular mechanisms underlying ESC derivation in the R2i condition.
    Materials And Methods
    In this experimental study, zona-free whole E3.5 blastocysts were seeded on mouse embryonic fibroblast (MEF) feeder cells in both R2i and serum conventional media. The isolated inner cell mass (ICM), ESCs and the ICM-outgrowths were collected on days 3, 5 and 7 post-blastocyst culture for quantitative real time- polymerase chain reaction (qRT-PCR) analysis as well as to assess the DNA methylation status at the time points during the transition from ICM to ESC.
    Results
    qRT-PCR revealed a significantly higher expression of the pluripotency-related genes (Oct4, Nanog, Sox2, Rex1, Dppa3, Tcf3, Utf1, Nodal, Dax1, Sall4 and β-Catenin) and lower expression of early differentiation genes (Gata6, Lefty2 and Cdx2) in R2i condition compared to the serum condition. Moreover, the upstream region of Oct4 and Nanog showed a progressive increase in methylation levels in the upstream regions of the genes following in R2i or serum conditions, followed by a decrease of DNA methylation in ESCs obtained under R2i. However, the methylation level of ICM outgrowths in the serum condition was much higher than R2i, at levels that could have a repressive effect and therefore explain the absence of expression of these two genes in the serum condition.
    Conclusion
    Our investigation revealed that generation of ESCs in the ground-state of pluripotency could be achieved by inhibiting the MEK and TGF-β signaling pathways in the first 5 days of ESC derivation.
    Keywords: DNA Methylation, MEK Inhibitor, Mouse Embryonic Stem Cells, R2i, TGF? Inhibitor
  • Marzieh Rahimipour, Mojdeh Salehnia *, Mina Jafarabadi Pages 369-376
    Objective
    This experimental study aimed to evaluate the effects of 17β-estradiol (E2) and progesterone (P4) on the interaction between mouse embryo and human endometrial mesenchymal stromal cells, and gene expressions related to implantation [αV and β3 integrins, interleukin-1 receptor (IL-1R), and leukemia inhibitory factor receptor (LIFR)] using an in vitro two- dimensional model.
    Materials And Methods
    In this experimental study, the endometrial stromal cells were isolated enzymatically and mechanically, and cultured to the fourth passage. Next, their immunophenotype was confirmed by flow cytometric analysis as mesenchymal stromal cells. The cells were cultured as either the experimental group in the presence of E2 (0.3 nmol) and P4 (63.5 nmol) or control group without any hormone treatment. Mouse blastocysts were co-cultured with endometrial mesenchymal stromal cells in both groups for 48 hours. Their interaction was assessed under an inverted microscope and scanning electron microscopy (SEM). Expressions of αV and β3 integrins, LIFR, and IL-1R genes were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR).
    Results
    Similar observations were seen in both groups by light microscopy and SEM. We observed the presence of pinopode-like structures and cell secretions on the apical surfaces of endometrial mesenchymal stromal cells in both groups. The trophoblastic cells expanded and interacted with the mesenchymal monolayer cells. At the molecular level, expression of IL-1R significantly increased in the hormonal treated group compared to the control (P≤0.05). Expressions of the other genes did not differ.
    Conclusion
    This study has shown that co-culture of endometrial mesenchymal stromal cells with mouse embryo in media that contained E2 (0.3 nmol) and P4 (63.5 nmol) could effectively increase the expression of IL-1R, which is involved in embryo implantation. However, there were no significant effects on expressions of αV and β3 integrins, LIFR, and on the morphology and ultrastructure of endometrial mesenchymal stromal cells.
    Keywords: Estrogen, Implantation, Interleukin, 1 Receptor, Mesenchymal Stromal Cells, Progesterone
  • Zahra Azhdari Tafti, Mehdi Mahmoodi, Mohammad Reza Hajizadeh, Vahid Ezzatizadeh, Hossein Baharvand, Massoud Vosough *, Abbas Piryaei * Pages 377-387
    Objective
    Recent advances in cell therapy have encouraged researchers to provide an alternative for treatment and restoration of damaged liver through using hepatocytes. However, these cells quickly lose their functional capabilities in vitro. Here, we aim to use the secretome of mesenchymal stromal cells (MSCs) to improve in vitro maintenance conditions for hepatocytes.
    Materials And Methods
    In this experimental study, following serum deprivation, human adipose tissue-derived MSCs (hAT-MSCs) were cultured for 24 hours under normoxic (N) and hypoxic (H) conditions. Their conditioned media (CM) were subsequently collected and labeled as N-CM (normoxia) and H-CM (hypoxia). Murine hepatocytes were isolated by perfusion of mouse liver with collagenase, and were cultured in hepatocyte basal (William’s) medium supplemented with 4% N-CM or H-CM. Untreated William’s and hepatocyte-specific media (HepZYM) were used as controls. Finally, we evaluated the survival and proliferation rates, as well as functionality and hepatocyte-specific gene expressions of the cells.
    Results
    We observed a significant increase in viability of hepatocytes in the presence of N-CM and H-CM compared to HepZYM on day 5, as indicated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium) assay. Indocyanine green (ICG) uptake of hepatocytes in the H-CM and HepZYM groups on days 3 and 5 also suggested that H-CM maintained the hepatocytes at about the same level as the hepatocyte-specific medium. The HepZYM group had significantly higher levels of albumin (Alb) and urea secretion compared to the other groups (P
    Conclusion
    The enrichment of William’s basal medium with 4% hAT-MSC-H-CM improved some physiologic parameters in a primary hepatocyte culture.
    Keywords: Conditioned Medium, Mesenchymal Stromal Cell, Primary Hepatocyte, Regenerative Medicine
  • Sara Taleahmad, Seyedeh Nafiseh Hassani, Ghasem Hosseini Salekdeh *, Hossein Baharvand * Pages 388-395
    Objective
    Pluripotent stem cells (PSCs), with the capacity to self-renew and differentiate into all other cell types, are of benefit in regenerative medicine applications. Tightly controlled gene expression networks and epigenetic factors regulate these properties. In this study, we aim to evaluate the metabolic signature of pluripotency under 2i and R2i culture conditions versus serum condition.
    Materials And Methods
    In this experimental study, we investigated bioinformatics analysis of the shotgun proteomics data for cells grown under 2i, R2i, and serum culture conditions. The findings were validated by cell cycle analysis and gene expressions of the cells with flow cytometry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively.
    Results
    Expressions of 163 proteins increased in 2i-grown cells and 181 proteins increased in R2i-grown cells versus serum, which were mostly involved in glycolysis signaling pathway, oxidation-reduction, metabolic processes, amino acid and lipid metabolism. Flow cytometry analysis showed significant accumulation of cells in S phase for 2i (70%) and R2i (61%) grown cells.
    Conclusion
    This study showed that under 2i and R2i conditions, glycolysis was highlighted for energy production and used to maintain high levels of glycolytic intermediates to support cell proliferation. Cells grown under 2i and R2i conditions showed rapid cell cycling in comparison with the cells grown under serum conditions.
    Keywords: Cell Cycle, Glycolysis, Metabolism Process, Mouse Embryonic Stem Cells
  • Nassim Ghorbanmehr, Mojdeh Salehnia *, Mahboobeh Amooshahi Pages 396-402
    Objective
    The aim of present study is to determine the effects of supplementation of oocyte maturation medium with sodium selenite (SS) on oocyte mitochondrial DNA (mtDNA) copy number and reactive oxygen species (ROS) levels.
    Materials And Methods
    In this experimental study germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stage oocytes were recovered from 6-8 week old female mice after superovulation. Some of the GV oocytes were cultured and matured in the presence and absence of SS. Then in vivo and in vitro matured (IVM) oocytes were subjected to mitochondria staining by MitoTracker green, ROS analysis, and mtDNA copy number determination using absolute real-time polymerase chain reaction (PCR).
    Results
    The maturation rate of GV oocytes to the MII stage significantly increased in the SS supplemented group (79.25%) compared to the control group (72.46%, P
    Conclusion
    SS increased oocyte mtDNA copy number by decreasing oxidative stress. SS had an association with better oocyte developmental competence.
    Keywords: In Vitro Maturation, mtDNA, Oocyte, Reactive Oxygen Species, Sodium Selenite
  • Neda Abedpour, Mojdeh Salehnia *, Nassim Ghorbanmehr Pages 403-411
    Objective
    The aim of the present study was to examine whether lysophosphatidic acid (LPA) could decrease cell death and improve in vitro culture (IVC) conditions in cultured vitrified mouse ovarian tissue.
    Materials And Methods
    In this experimental study, we collected and randomly divided 7-day-old mouse ovarian tissues into vitrified and non-vitrified groups. The ovaries were cultured in the presence and absence of LPA for one week. Morphology and follicular development were evaluated by hematoxylin and eosin (H&E) and Masson’s trichrome (MTC) staining. The incidence of cell death was assessed by flow cytometry using annexin V/propidium iodide (PI) and a caspase-3/7 assay in all studied groups.
    Results; The vitrified groups had a significantly decreased follicle developmental rate compared to the non-vitrified groups (P
    Conclusion
    Both vitrification and IVC adversely affected cell survival and caused cell death. We postulated that LPA supplementation of culture medium could improve the developmental rate of follicles and act as an anti-cell death factor in non-vitrified and vitrified ovarian tissues. It could be used for in vitro maturation of ovarian tissue.
    Keywords: Cell Death, In Vitro Culture, Lysophosphatidic Acid, Vitrification
  • Mozafar Khazaei, Mona Pazhouhi *, Saber Khazaei Pages 412-421
    Objective
    Glioblastoma multiforme is the most malignant form of brain tumors. Trifolium pratense L. has been suggested for cancer treatment in traditional medicine. Here we have investigated the effects of T. pratense extract on glioblastoma multiforme cell line (U87MG).
    Materials And Methods
    In this experimental study the effect of T. pratense extract on cell viability was investigated using trypan blue staining, MTT assay, and lactate dehydrogenase activity measurement. Apoptosis and autophagy cell death were detected by fluorescent staining. Nitric oxide (No) production was measured using Griess reaction. Expression levels of some apoptotic and autophagic-related genes were detected using real-time polymerase chain reaction (PCR). The combination effects of T. pratense extract and temozolomide (TMZ) were evaluated by calculating the combination index and dose reduction index values.
    Results
    After treatment with T. pratense extract, the cell viability was significantly reduced in a time- and dose- dependent manner (P
    Conclusion
    T. pratense showed anti-cancer properties via induction of apoptosis and autophagy cell death.
    Keywords: Apoptosis, Autophagy, Glioblastoma Multiforme, Temozolomide
  • Elham Farjad, Hamid Reza Momeni * Pages 422-426
    Objective
    Cadmium is an environmental pollutant which induces oxidative stress while silymarin as an antioxidant is able to scavenge free radicals. The aim of the present study was to investigate the effect of silymarin on oxidative stress markers and antioxidant defense system capacity in mice treated with cadmium chloride.
    Materials And Methods
    In this experimental study, adult mice were divided into four groups as follow: i. Control, ii. Cadmium chloride (5 mg/kg b.w., s.c.), iii. Silymarin熧暊 chloride, and iv. Silymarin (100 mg/kg b.w., i.p.). Mice were treated with cadmium chloride for 24 hours and silymarin was administered 24 hours before the cadmium. Blood samples were then collected from the experimental groups and their sera were prepared. To investigate oxidative stress markers in the serum, the amount of malondialdehyde (MDA) and thiol groups (-SH) were evaluated. To measure the total antioxidant power in the serum, Ferric Reducing/ Antioxidant Power (FRAP) method was used. In addition, the activity of enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) was assessed to evaluate serum antioxidant defense power.
    Results
    In the cadmium-treated group, the amount of MDA significantly increased as compared to the control group. In silymarin熧暊 group, silymarin significantly ameliorated the level of MDA compared to the cadmium group. In addition, cadmium significantly reduced serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control. In silymarin熧暊 group, silymarin could significantly reverse the reduction of these markers compared to the cadmium group. Administration of silymarin alone caused a significant increase in serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control group.
    Conclusion
    Silymarin as a powerful antioxidant reverses the toxic effect of cadmium on the serum levels of lipid peroxidation, total antioxidant power, antioxidant defense system enzymes activity and thiol groups.
    Keywords: Cadmium, Oxidative Stress, Silymarin
  • Neda Ranjbar Kohan, Saeed Nazifi, Mohammad Reza Tabandeh *, Maryam Ansari Lari Pages 427-434
    Objective
    L-carnitine (LC) has been shown to protect cardiac metabolism in diabetes patients with cardiovascular diseases (CVDs). Apelin, a newly discovered adipocytokines, is an important regulator of cardiac muscle function; however, the role of the level of expression of Apelin axis in improvement of cardiac function by LC in diabetic patients, is not clear. In the present study, obese insulin-resistant rats were used to determine the effect of LC, when given orally with a high-calorie diet, on Apelin and Apelin receptor (Apj) expression in cardiac muscle.
    Materials And Methods
    In this experimental study, rats were fed with high-fat/high-carbohydrate diet for five weeks and subsequently were injected with streptozotocin 30 mg/kg for induction of obesity and insulin resistance. After confirming the induction of diabetes (serum glucose above 7.5 mmol/L), the animals received LC 300 mg/kg in drinking water for 28 days. On days 0, 14 and 28 after treatment, cardiac Apelin and Apj gene expression was evaluated by real time polymerase chain reaction (PCR) analysis. Serum levels of insulin, Apelin, glucose, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and the homeostasis model assessment of insulin resistance (HOMA-IR) were also measured using commercial kits.
    Results
    Cardiac Apelin and Apj expression and serum Apelin were increased in obese rats, while LC supplementation decreased the serum levels of Apelin and down-regulated Apelin and Apj expression in cardiac muscle. These changes were associated with reduced insulin resistance markers and serum inflammatory factors and improved lipid profile.
    Conclusion
    We concluded that LC supplementation could attenuate the over-expression of Apelin axis in heart of diabetic rats, a novel mechanism by which LC improves cardiovascular complications in diabetic patients.
    Keywords: Apelin, Apelin Receptor, Cardiac Muscle, Diabetes, L, Carnitine
  • Yushuang Yang, Jie Yang, Fenghua Sui, Pengfei Huo *, Hailing Yang * Pages 435-442
    Objective
    This study used bioinformatics to determine genetic factors involved in progression of acute myocardial infarction (MI).
    Materials And Methods
    In this prospective study, gene expression profile GSE59867 was downloaded from the Gene Expression Omnibus database, which contained 46 normal samples obtained from stable coronary artery disease patients (n=46) who were without history of MI (control) and 390 samples from patients (n=111) who had evolving ST-segment elevation myocardial infarction (STEMI) as the MI group. These samples were divided into 4 groups based on time points. After identification of differentially expressed genes (DEGs), we conducted hierarchical clustering and functional enrichment analysis. Protein interaction and transcriptional regulation among DEGs were analysed.
    Results
    We observed 8 clusters of DEGs that had a peak or a minimum at the t=1 time point according to gene expression levels. Upregulated DEGs showed significant enrichment in the biological process, single-organism cellular process, response to stimulus and stress, and osteoclast differentiation and lysosome. Downregulated DEGs enriched in the T-cell receptor signalling pathway and natural killer cell mediated cytotoxicity. We identified multiple genes, including signal transducer and activator of transcription 3 (STAT3); LCK proto-oncogene, Src family tyrosine kinase (LCK); and FYN proto-oncogene, Src family tyrosine kinase (FYN) from the protein-protein interaction (PPI) network and/or the transcriptional regulatory network.
    Conclusion
    Cytokine-mediated inflammation, lysosome and osteoclast differentiation, and metabolism processes, as well as STAT3 may be involved in the acute phase of MI.
    Keywords: Gene Expression Profile, Myocardial Infarction, Protein, Protein Interaction Network, Transcriptional Regulatory Network
  • Mahdi Lotfipanah *, Fereydoon Azadeh, Mehdi Totonchi, Reza Omani-Samani Pages 443-448
    Objective
    Stem cells that have unlimited proliferation potential as well as differentiation potency are considered to be a promising future treatment method for incurable diseases. The aim of the present study is to evaluate the future trend of stem cell researches from researchers’ viewpoints.
    Materials And Methods
    This was a cross-sectional descriptive study on researchers involved in stem cell research at Royan Institute. We designed a questionnaire using a qualitative study based on expert opinion and a literature review. Content validity was performed using three rounds of the Delphi method with experts. Face validity was undertaken by a Persian literature expert and a graphics designer. The questionnaire was distributed among 150 researchers involved in stem cell studies in Royan Institute biology laboratories.
    Results
    We collected 138 completed questionnaires. The mean age of participants was 31.13 ± 5.8 years; most (60.9%) were females. Participants (76.1%) considered the budget to be the most important issue in stem cell research, 79.7% needed financial support from the government, and 77.5% felt that charities could contribute substantially to stem cell research. A total of 90.6% of participants stated that stem cells should lead to commercial usage which could support future researches (86.2%). The aim of stem cell research was stipulated as increasing health status of the society according to 92.8% of the participants. At present, among cell types, importance was attached to cord blood and adult stem cells. Researchers emphasized the importance of mesenchymal stem cells (MSCs) rather than hematopoietic stem cells (HSCs, 57.73%). The prime priorities were given to cancer so that stem cell research could be directed to sphere stem cell research whereas the least preference was given to skin research.
    Conclusion
    Regenerative medicine is considered the future of stem cell research with emphasis on application of these cells, especially in cancer treatment.
    Keywords: Attitudes, Regenerative Medicine, Stem Cell, Treatment
  • COMPARE CPM-RMI Trial: Intramyocardial Transplantation of Autologous Bone Marrow-Derived CD133+ Cells and MNCs during CABG in Patients with Recent MI: A Phase II/III, Multicenter, Placebo-Controlled, Randomized, Double-Blind Clinical Trial
    Mohammad Hassan Naseri, Hoda Madani, Seyed Hossein Ahmadi Tafti, Maryam Moshkani Farahani, Davood Kazemi Saleh, Hossein Hosseinnejad, Nasser Aghdami * Pages 449-449