فهرست مطالب

فصلنامه فیزیک زمین و فضا
سال سی و نهم شماره 4 (زمستان 1392)

  • تاریخ انتشار: 1392/11/11
  • تعداد عناوین: 15
|
  • مرتضی فتاحی*، نینا عطایی، نسرین کریمی موید صفحات 1-16
    مقاله پیش رو عرضه کننده قسمتی از تحقیقاتی است که به منظور اندازه گیری سن نمونه های برداشت شده از دریاچه قدیم گلباف صورت گرفته است و می توان به کمک آنها سن فعال بودن آن دریاچه و فعالیت گسل گوک را برآورد کرد. به منظور اندازه گیری سن نمونه ها به روش رخشانی (لومینسانس) تحریک شده با نور، به دو پارامتر دز معادل دز طبیعی و دز سالانه نیاز است. برای اندازه گیری دز معادل از روش سار استفاده شد. در ابتدا توانایی این روش در بازیابی دز مشخصی که در آزمایشگاه به نمونه داده شد بررسی شد. در هنگام بازیابی دز مشخص آزمایشگاهی، میزان به دست آمده حدود 20% بیش از دز اعمال شده در آزمایشگاه بود. موضوع تحت تحقیق قرار گرفت. عوامل روش شناختی برای تعیین دز معادل، فرایندهای فیزیکی موثر بر سیگنال رخشانی و موارد فنی مورد بررسی دقیق قرار گرفت. توانایی روش سار در اندازه گیری و تصحیح تغییر حساسیت در اثر دز و گرما و نور بررسی شد. میزان سیگنال رخشانی در نخستین اندازه گیری، حدود 40% بیش از سیگنال سایر اندازه گیری های بررسی تغییر حساسیت بود. این پدیده غیرقابل انتظار و نامانوس بود. لذا آزمایش هایی طراحی و مواردپیش گفته مورد تفحص قرار گرفت. این مقاله به توضیح کامل این تحقیق می پردازد و نشان می دهد پس از بررسی های گوناگون متوجه شدیم که موارد پیش گفته چگونه در اثراعمال دز پرتوزا و لیزرفروسرخ بر الیکوت های کناری اثر گذاشته است؛ یعنی الیکوت موردنظر، ناخواسته تحت تاثیر دز و نور قرار گرفته است. با قرار دادن دو در میان الیکوت ها این پدیده غیر متعارف حذف شد و روش سار با موفقیت توانست دز مشخص آزمایشگاهی را بازیابی کند.
    کلیدواژگان: الیکوت های کناری، بازیابی دز، روش سار
  • هنگ لرزه ها، آغاز بررسی پیشینه در ایران
    محمدرضا قاسمی* صفحات 17-29
    پژوهش روی هنگ لرزه ها در دنیا از حدود نیم سده پیش آغاز شده است. گام های آغازین این پژوهش ها بر پیوند بین هنگ لرزه ها و گستره های آتشفشانی تاکید دارد. برخی جایگاه های فرعی گوناگون دیگر نیز برای این گونه زمین لرزه ها پیشنهاد شده است. رشته هنگ لرزه ها به واسطه بزرگای به نسبت کمی که در آنها مشاهده می شود، کمتر در ایران مورد توجه قرار گرفته اند، اگرچه برخی از آنها سبب آسیب و ویرانی نیز شده اند. این پژوهش با بررسی 24 رویداد از این گونه زمین لرزه ها که در طی دوره تاریخی و دستگاهی در ایران روی داده اند، تلاش دارد تا ویژگی های عمومی و جایگاه آنها را مورد شناسایی آغازین قرار دهد. نتیجه این پژوهش آشکار می سازد که هنگ لرزه های ایران بیش از همه در زاگرس و سپس جنوب البرز مرکزی و آذربایجان روی می دهند و هیچ گونه پیوند آشکاری بین آنها با جنبش های آتشفشانی وجود ندارد. این زمین لرزه ها همگی در پوسته روی داده اند. در برخی گستره ها مانند زاگرس، شاید بتوان این گونه زمین لرزه ها را به ناپیوستگی های مکانیکی درون پوسته نسبت داد. بررسی آماری هنگ لرزه های ایران آشکار می سازد که بزرگای تجمعی زمین لرزه های روی داده در هر دسته رویداد، از بزرگای بزرگ ترین رویداد آن دسته بیش از 5/0 واحد بزرگا بیشتر نیست. آمار ویژگی های بزرگا، تعداد رویداد، پهنه رویداد و بازه زمانی رویداد این زمین لرزه ها زمینه ای را فراهم می سازد تا لرزه شناسان این دسته از جنبش های لرزه زمین ساختی را با دقت بیشتر مورد کنکاش قرار دهند و آنها را از لرزه های اصلی و یا پیش لرزه ها بازشناسند.
    کلیدواژگان: هنگ لرزه ها، دسته زمین لرزه، زاگرس، البرز، آذربایجان، گستره های آتشفشانی
  • مهرداد سلیمانی منفرد*، هاشم شاهسونی، یورگن مان صفحات 31-44
    شرایط زمین شناسی در منطقه گرابن بزرگ راین در منطقه مرزی بین فرانسه و آلمان به گونه ایی است که برای بهره برداری های زمین گرمایی مناسب به نظر می رسد. در این تحقیق، داده های لرزه نگاری بازتابی برداشت شده، به روش های نوین مورد پردازش قرار گرفت. در این تحقیق، علاوه بر چندین مقطع زمانی برانبارش که به روش های مرسوم، روش سطح بازتاب مشترک و روش سطح پراش مشترک تهیه شد، مدل سرعت منطقه نیز به روش توموگرافی موج عمود در نقطه ورود به دست آمد. سپس داده های برانبارش شده تحت کوچ عمقی پیش و پس از برانبارش قرار گرفتند. در مقطع کوچ عمقی پس از برانبارش که روی مقطع بر انبارش شده به روش سطح پراش مشترک صورت گرفت، روش پیش گفته توانست همه ساختارها و گسل های ریز را به خوبی آشکار کند. مقایسه این مقطع با مقطع کوچ عمقی پیش از برانبارش و مقطع به دست آمده به روش سطح بازتاب مشترک نشان داد که در این روش، در عین سادگی مدل سرعت، به علت کسب همه انرژی های پراشیده شده در اثر برخورد با گسل ها، نتیجه کوچ بسیار خوب و قابل مقایسه با نتیجه مقطع حاصل از کوچ عمقی پیش از برانبارش است. در نهایت نتایج تفسیر این مقاطع نشان می دهد که بخش انتخاب شده به منظور کاربرد زمین گرمایی، دارای گسل های متعددی است که باعث انتقال آب از چاه تزریقی به سازند موردنظر می شود.
    کلیدواژگان: انرژی زمین گرمایی، سطح بازتاب مشترک، سطح پراش مشترک، کوچ عمقی، تصویرسازی لرزه ایی
  • صابر جهانجوی، حمیدرضا سیاه کوهی*، رامین نیکروز صفحات 45-60
    معمولا در مراحل گوناگون پردازش داده های لرزه ای، فرض بر آن است که این داده ها به صورت منظم در راستای مکان و زمان نمونه برداری شده اند. اما اغلب در عمل به علت محدودیت های دسترسی در منطقه مورد بررسی و نقص دستگاهی، این فرض صادق نیست. از این رو محاسبه طیف بسامدی سیگنال هایی با نمونه برداری نامنظم و بازسازی آن روی یک شبکه با نمونه برداری منظم، یکی از مهم ترین بحث های رایج در پردازش سیگنال بشمار می رود. در متن حاضر ضمن معرفی الگوریتم تبدیل فوریه ضد نشت، از آن برای حذف نشت بسامدی ناشی از پنجره کردن داده ها و نمونه برداری نامنظم، استفاده و طیف بسامدی سیگنال را با دقت زیادی محاسبه می کنیم. با استفاده از طیف بسامدی به دست آمده می توان سیگنال را روی هر شبکه منظم دلخواهی بازسازی کرد.
    تبدیل فوریه ضد نشت الگوریتمی تکراری است که در هر تکرار تبدیل فوریه گسسته سیگنال را محاسبه می کند. در هر تکرار، بزرگ ترین ضریب فوریه انتخاب و روی شبکه نمونه برداری شده در حوزه t-x برگردانده و از سیگنال ورودی کسر می شود. این عمل تا زمانی که انرژی سیگنال باقی مانده به مقدار آستانه از قبل تعیین شده برسد، روی سیگنال باقی مانده تکرار می شود.
    در این مقاله الگوریتم تبدیل فوریه ضد نشت در حوزه F-X بر برش های بسامد زمانی داده های لرزه ای اعمال شده و هر بسامد روی شبکه دلخواه، بازسازی می شود. روش معرفی شده، داده های لرزه ای کاملا نامنظم و داده های لرزه ای منظم با ردلرزه گم شده را با دقت زیادی بازسازی می کند. در مورد داده های لرزه ای با نمونه برداری نزدیک به منظم نیز با اعمال یک ماسک ضد دگرنامی می توان رویدادهای با شیب بسیار تند را بازسازی کرد. کارایی روش روی داده های لرزه ای مصنوعی و واقعی ارزیابی، و نتایج آن عرضه شده است.
    کلیدواژگان: تبدیل فوریه ضد نشت، نشت بسامدی، نمونه برداری نامنظم، درون یابی داده لرزه ای
  • محمدرضا آزاد، محمد کنشلو*، ابوالقاسم کامکار روحانی صفحات 61-72
    با توجه به این واقعیت که توده های کرومیت وزن مخصوص زیادی دارند، در اکتشافات معدنی معمول ترین روش ژئوفیزیکی که برای اکتشاف ذخایر کرومیت پیشنهاد می شود، روش گرانی سنجی است. در نقشه های بی هنجاری بوگه حاصل از برداشت های گرانی سنجی گرچه تاثیر بسیاری از عوامل فیلتر و حذف می شود، لیکن بازهم مقادیر بازماند به دست آمده نتیجه برهم نهی چند مولفه متفاوت از حیث ابعاد تاثیر و درجه اهمیت هستند. برای پردازش و تفسیر نقشه های بی هنجاری گرانی اصولا از روش های متعددی استفاده می شود. نقطه ضعف فیلترهای ژئوفیزیکی معمول در نظرنگرفتن ساختار فضایی داده ها حین تفکیک آنها است. ساختار فضایی در واقع بیانگر میزان همبستگی داده ها نسبت به فاصله بینشان است. آنالیز کریجینگ فاکتوری (FKA) اساسا یک نوع فیلترینگ زمین آماری است که قادر است با توجه به تشخیص ساختارهای فضایی از روی واریوگرام تودرتوی داده ها و تفکیک ساختارها، به تجزیه متغیر اولیه به مولفه های اصلی آن و یا در واقع عوامل اصلی تغییرپذیری بپردازد. در این تحقیق، داده های گرانی منطقه معدنی کرومیت فاریاب با استفاده از روش FKA پردازش و تفسیر شده است. براساس بررسی های ساختاری سه ساختار متناسب با فاکتورهای ناحیه ای، محلی و نوفه تشخیص داده و دو محدوده برای ادامه عملیات اکتشافی براساس مولفه ناحیه ای فیلتر شده پیشنهاد شده است. نتایج حاصل از این روش با نتایج حاصل از فیلترهای ژئوفیزیکی مقایسه شده است. این تحقیق به خوبی قابلیت کاربرد این روش را در فیلتر کردن داده های گرانی سنجی نشان می دهد.
    کلیدواژگان: گرانی سنجی، فیلتر، ساختار فضایی، آنالیز کریجینگ فاکتوری (FKA)، معدن کرومیت فاریاب
  • فائزه بهرامی، وحید ابراهیم زاده اردستانی صفحات 73-82
    در این تحقیق، یک الگوریتم برای تفسیر کمی سریع داده های گرانی تولید شده از شکل اجسام هندسی ساده و برآورد عمق و دیگر پارامترهای یک ساختار مدفون، توسعه داده شده است. این الگوریتم مشتق عددی افق چهارم محاسبه شده از بی هنجاری گرانی مشاهده شده را با استفاده از صافی های متوالی طول پنجره برای برآورد عمق و شکل ساختار مدفون مورد استفاده قرار می دهد. برای یک طول پنجره ثابت شده، عمق با استفاده از یک فرمول ساده برای هر نوع شکل برآورد، و تغییر در عمق های محاسبه شده نسبت به انواع شکل روی یک نمودار رسم می شود. همه نقاط برای یک طول پنجره ثابت با یک منحنی پیوسته (منحنی-s) به هم وصل می شوند و برای تعیین عمق و شکل ساختار مدفون، محل تلاقی مشترک از منحنی-s خوانده می شود. این روش برای داده های مصنوعی با و بدون خطاهای تصادفی در یک میدان نمونه در ایران به کار برده شد. در موارد مربوط به آزمایش، عمق های به دست آمده تطابق خوبی با مقادیر واقعی دارند.
    کلیدواژگان: بی هنجاری گرانی، عمق و شکل برآوردشده، منحنی، s، مشتق عددی افقی چهارم
  • محمود میرزایی، محمد محمدزاده مقدم، بهروز اسکویی، فریدون قدیمی عروس محله، سید سجاد جزایری* صفحات 83-96
    چشمه های آبگرم متعدد در منطقه محلات و همچنین نوع زمین شناسی منطقه، نشان دهنده وجود یک سامانه زمین گرمایی بزرگ در اعماق منطقه است. طی فعالیت های صورت گرفته از 1374 در ایران، چندین ناحیه امیدبخش از لحاظ پتانسیل زمین گرمایی از سوی مرکز انرژی های نو وزارت نیرو معرفی شده که محلات یکی از مناطق مهم در این زمینه است. به منظور شناسایی دقیق نواحی مستعد زمین گرمایی، عملیات مغناطیس سنجی زمینی در طول 10 نیم رخ به نسبت بلند، جمعا به طول حدود 160 کیلومتر با فاصله ایستگاهی 40 متر و فاصله نیم رخی 5/1 کیلومتر، در محدوده اطراف چشمه های آبگرم محلات صورت گرفت. در مجموع بیش از 4000 ایستگاه مغناطیس سنجی برداشت شد. در این پژوهش داده های حاصل از عملیات مغناطیس سنجی زمینی با استفاده از دو روش بسیار کاربردی اویلر و روش تلفیقی سیگنال تحلیلی و اویلر (AN-EUL) مورد تفسیر قرار گرفته است. نتایج برآورد عمق منبع اصلی بی هنجاری به دست آمده با این دو روش، وجود یک منبع زمین گرمایی با عمق حداقل یک کیلومتر در منطقه را برآورد می کند. مقدار شاخص ساختاری به دست آمده از این دو روش پردازشی، موید این است که منبع بی هنجاری احتمالا داری شکلی شبیه به یک استوانه قائم است. نبود قطب منفی مغناطیسی بارز در منطقه احتمالا حاکی از گسترش این توده در عمق است. همچنین نتایج این پژوهش نشان می دهد که روش اویلر علاوه بر برآورد عمق بی هنجاری، به بررسی روند تغییر عمق در نقاط متفاوت بی هنجاری هم می پردازد ولی روش AN-EUL فقط در نقاط خاصی می تواند برآورد عمق را عملی سازد.
    کلیدواژگان: چشمه های آب گرم، محلات، مغناطیس سنجی زمینی، منبع زمین گرمایی
  • میلاد تکلو، بهروز اسکویی*، سهیل پرخیال صفحات 97-108
    به منظور بررسی مخزن زمین گرمایی سبلان و هدف گذاری چاه های جدید اکتشافی و تزریقی، داده های مگنتوتلوریک در دو فاز طی سال های 2007 و 2009 برداشت شد. پس از بررسی ابعادی محیط و تصحیح داده های خارج از رده که ناشی از نوفه های محیطی بودند، معکوس سازی داده های مگنتوتلوریک صورت گرفت. نتایج به دست آمده در محدوده سبلان، مخزن زمین گرمایی را به شکل مناسبی آشکار کرد. بررسی مقاطع مقاومت ویژه حاصل از برگردان 2D در کنار داده های چاه های اکتشافی و برداشت های زمین شناسی نشان داد که سامانه زمین گرمایی سبلان با مدل مطالعاتی که جانستون (1992) عرضه کرده است و در آن لایه های رسانای ضخیم تر معمولا در نواحی خروجی جریان زمین گرمایی یافت می شوند، مطابقت دارد.
    کلیدواژگان: مگنتوتلوریک، برگردان دوبعدی، سامانه زمین گرمایی، مدل جانستون
  • سمانه ثابت قدم، فرهنگ احمدی گیوی، یحیی گلستانی، عباسعلی علی اکبری بیدختی صفحات 109-122
    میدان دید در جو، علاوه بر عوامل طبیعی، متاثر از پراکنش و خاموشی نور در ذرات و مولکول های موجود در آن است. از این رو دید افقی و تغییرات آن یک نشانگر مشاهداتی ساده و خوب برای کیفیت هوا به شمار می رود. در مقاله حاضر، اثر غلظت آلاینده های جو شهری بر دید افقی منطقه جنوب غرب تهران در سال 2008 بررسی شده است. داده های استفاده شده در این مقاله، شامل دیدبانی های روزانه ایستگاه هواشناسی مهرآباد و غلظت آلاینده های جوی در ایستگاه میدان آزادی در شهر تهران است. نتایج نشان می دهد که میزان غلظت آلاینده های جوی در منطقه شهری تهران در مقایسه با دیگر شهرهای آلوده و پرجمعیت دنیا بسیار بالاتراست. آلاینده های اصلی و مهم تاثیرگذار بر کاهش دید به ترتیب کربن مونوکسید، نیتروژن دی اکسید و سپس ذرات معلق با قطر کمتر از 10 میکرون هستند. نتایج بررسی ماهانه حاکی از آن است که در ماه های سرد سال، آلاینده های شهری نقش بارزتری در کاهش دید افقی دارند. بیشترین همبستگی منفی میان گوگرد دی اکسید و محدوده دیداری در فصل زمستان مشاهده شده است و بررسی دقیق تر نشان می دهد که میزان رطوبت نسبی جو، اثر تعیین کننده ای در چگونگی ارتباط انواع آلاینده ها، به جز کربن مونوکسید، با دید افقی دارد.
    کلیدواژگان: دید افقی، آلاینده های شهری، همبستگی، تهران
  • محمدحسین شوشتری، فائزه ناجی، عباسعلی علی اکبری بیدختی صفحات 123-134
    در این مقاله اثر یون ها در تشکیل ابر گرم در محیط آزمایشگاه بررسی شده است. همان طور که وجود یون ها در جو در تشکیل ابرها موثر است این تاثیر در آزمایشگاه بررسی شده است. در آزمایش های صورت گرفته، از دو الکترود که به ولتاژ بالا متصل شدند برای یونیده کردن هوای داخل محفظه شیشه ای استفاده شده است، به طوری که ولتاژ زیاد با اعمال یک میدان الکتریکی قوی سبب یونیده شدن هوای داخل محفظه شده است. تشکیل ابر گرم مصنوعی با استفاده از انبساط بی در رو در حالت های بدون یون و با حضور یون و با غلظت های متفاوت بررسی شده است. سامانه اندازه گیری غلظت ابر گرم مصنوعی متشکل از یک لیزر (با طول موج 598 نانومتر)، آشکار ساز، آمپلی فایر و یک رایانه مجهز به مبدل (A/D) است، به طوری که پرتو لیزر از میان ابر گرم مصنوعی عبور می کند و به آشکارساز می رسد و بسته به غلظت ابر تشکیل شده، سیگنال لیزر تغییر می کند. این سیگنال و شرایط دیگر آزمایش از قبیل دما و میزان رطوبت داخل محفظه ابر و بیرون از آن با رایانه به صورت مستقیم و پیوسته ثبت می شود. همچنین فشار هوای داخل محفظه با یک دستگاه شامل یک پمپ الکتریکی، شیلنگ های رابط و یک شیر تخلیه تغییر می یابد و با استفاده از یک مانومتر آبی اندازه گیری می شود. نتایج نشان می دهد که حضور یون به طور چشمگیری در تشکیل ابر در شرایط آزمایشگاهی موثر است. به صورت کیفی با افزایش غلظت یون، ابر غلیظ تری تشکیل می شود ولی افزایش بیش از حد غلظت یون به علت اثر فراباروری، نقش کاهنده در باروری ابر تشکیل شده دارد و ریزش ابر در غلظت های بیش از حد بهینه، کاهش پیدا می کند.
    کلیدواژگان: یون، ابر گرم، هسته میعان ابر، هسته سازی ناهمگن، ابراشباع
  • عباس رنجبرسعادت آبادی، پریسا ایزدی صفحات 135-157
    بی هنجاری های دمای سطح آب اقیانوس هند و دریای عرب می تواند در تغذیه رطوبتی و شکل گیری سامانه های جوی نقش موثری داشته باشد در این تحقیق، به منظور شناسایی ارتباط بی هنجاری های دمای سطح آب و بی هنجاری های بارش در نیمه جنوبی ایران، ابتدا به صورت موردی منابع رطوبتی و نحوه انتقال رطوبت با استفاده از برون داد مدل ARPEG و محاسبه بردار شار رطوبت ویژه، همگرایی و واگرایی آن در ترازهای پایین جو بررسی شد. سپس همبستگی بین بی هنجاری های دمای سطح آب با بارش نیمه جنوبی کشور به صورت ماهانه بررسی شده است. برای این منظور طی دوره آماری 50 ساله (1956-2005) برای ماه های اکتبر تا مارس داده های بی هنجاری دمای سطح آب دریای عرب و اقیانوس هند و داده های 9 ایستگاه سینوپتیک برای بی هنجاری های بارش نیمه جنوبی ایران مورد بررسی قرار گرفت. ضریب همبستگی بین بی هنجاری های بارش و بی هنجاری های دمای سطح آب دریای عرب، شرق و غرب اقیانوس هند محاسبه شد. نتایج حاصل نشان داد که بردار شار رطوبت ویژه، همگرایی و واگرایی آن و خطوط جریان در ترازهای پایین جو به گونه ای است که در زمان فعالیت سامانه های کم فشار دینامیکی، شرایط مناسبی برای تغذیه رطوبت از روی دریای عرب، دریای سرخ و خلیج فارس فراهم می شود. بیشترین ضریب همبستگی مربوط به دریای عرب در ماه های اکتبر، نوامبر، ژانویه و فوریه بوده است. همچنین همبستگی معنی داری بین بی هنجاری بارش و بی هنجاری دمای سطح آب نواحی غربی اقیانوس هند در ماه های اکتبر، نوامبر و ژانویه و برای نواحی شرقی آن در ماه های اکتبر و نوامبر به دست آمد. برای ماه های دسامبر و مارس همبستگی معنی داری حاصل نشد.
    کلیدواژگان: بی هنجاری های دمای سطح آب، بارش، همبستگی، نیمه جنوبی ایران
  • مجید آزادی، محمد مهدی خدادی صفحات 159-175
    در این تحقیق رشد و گسترش فشاروردی و کژفشاری دو موج سیاره ای در ناحیه شرق دریای مدیترانه، سوریه و غرب ایران واندرکنش آنها با چرخندهای سطح زمین از دیدگاه انرژی بررسی شده است. با استفاده از داده هایCFSR با تفکیک افقی 5/. درجه مقدار انرژی و مولفه های گوناگون گرایش انرژی برای این چرخندها محاسبه شده است. چرخند اول مربوط به ژانویه 2004‍‍ روی غرب مدیترانه شکل می گیرد و روی شرق مدیترانه تضعیف اما در طی مسیر خود تا نواحی غرب ایران در دو ناحیه دیگر تقویت می شود. نتایج نشان می دهد که مهم ترین عامل رشد ثانویه مرکز انرژی درجریان سوی ناوه روی شمال عربستان و شرق مدیترانه و سپس غرب ایران تبدیل کژفشاری انرژی و همگرایی شار آزمین گرد انرژی است.
    برای چرخند دوم مربوط به ژانویه سال 2000، مشابه مورد اول ابتدا یک مرکز انرژی قوی روی دریای مدیترانه در پادجریان سوی ناوه وجود دارد. در این مورد حضور جت جنب حاره موجب شار آزمینگرد قوی انرژی از این مرکز به جریان سوی ناوه و در نتیجه موجب گسترش جریان سوی مرکز انرژی روی شمال عربستان و غرب ایران می شود. همچنین نقش فرارفت هوای گرم در شمال عربستان و شرق مدیترانه و سپس صعود اجباری هوا در غرب ایران در تقویت عامل کژفشاری و گسترش جریان سوی انرژی برای این مورد، مشابه مورد پیشین است. اما در این مورد نقش عامل فشاروردی (تنش های رینولدز) نیز در تقویت این مرکز انرژی قابل توجه است. به بیان دیگر تاثیر جت جنب حاره ای در تقویت چرخند در جنوب غرب ایران دیده می شود.
    کلیدواژگان: گسترش جریان سو، انرژی چنبشی پیچکی، تبدیل فشاروردی، تبدیل کژفشاری
  • مریم دوستی، محمود حبیب نژاد روشن، کاکا شاهدی، میرحسن میریعقوب زاده صفحات 177-189
    گرمایش جهانی و تغییرات اقلیم، از جمله مسائلی هستند که امروزه توجه بسیاری از دانشمندان را به خود جلب کرده اند. یکی از روش های معتبر برای بررسی پدیده تغییر اقلیم، استفاده از مدل های گردش عمومی جو (GCM) است. به علت تفکیک فضایی کم برخی پدیده های ریزمقیاس در مدل های گردش عمومی جو، این مدل ها نمی توانند تقریب درستی از شرایط آب وهوایی منطقه مورد بررسی به دست دهند؛ لذا باید خروجی آنها تا حد ایستگاه هواشناسی، ریزمقیاس شود. در این تحقیق یک نوع از مدل های (GCM) تحت عنوان HADCM3 در دوره سال های 2046-2065 به کار گرفته شد. برای شبیه سازی پارامترهای اقلیمی در حوضه تمر استان گلستان داده های مدل HADCM3 با استفاده از مدل LARS-WG تحت دو سناریوی A2 و A1B ریزمقیاس شدند. نتایج نشان داد که میانگین دما با در نظر گرفتن سناریوی A2، 48/2 درجه سلسیوس و با در نظر گرفتن سناریوی A1B، 43/2 درجه افزایش خواهد یافت. همچنین نتایج نشان از افزایش 16% بارش در سناریوی A2 و 2% بارش در سناریوی A1B، در دوره 2046-2065 دارد. همین طور میزان ساعت های آفتابی در دوره بررسی و با در نظر گرفتن هر دو سناریو کاهش خواهد یافت.
    کلیدواژگان: ریزمقیاس نمایی، مدل گردش عمومی جو، LARS، WG، تمر، استان گلستان
  • سیده شیما پورعلی حسین، علیرضا مساح بوانی صفحات 191-208
    از جمله آثار پدیده تغییر اقلیم، افزایش دما، و نیز کاهش مقدار بارش در برخی مناطق جهان از جمله ایران است و لذا بررسی اثرات این پدیده ضروری می نماید. در این تحقیق، پس از برداشت داده های مشاهداتی ماهانه دما و بارش 15 ایستگاه هواشناسی در دوره 1981-2012، داده ها با کمک روش های گوناگون درون یابی و انتخاب بهترین روش، برای سلول های 5/0 در 5/0 درجه تولید شد. پس از پیش بینی متغیرهای اقلیمی برای دوره 2013 تا 2022 به صورت ماهانه با شانزده مدل جفت شده، گردش عمومی جو-اقیانوس (AOGCM) تحت سناریوهای A1B، A2 و B1، و ریزمقیاس نمایی مکانی داده ها در مقیاس 5/0 در 5/0 درجه با کمک روش Bias Correction/Spatial Downscaling، به منظور بررسی عدم قطعیت و تحلیل مخاطره پیش بینی ها، داده ها با استفاده از روش مقیاس الگو، برای 46 سناریوی دیگر نیز تولید شدند. با محاسبه دما و بارش برای سطوح متفاوت مخاطره مشخص شد که در سطح مخاطره 10 درصد دما 9/2-15/3 درجه افزایش، و مقدار بارش 75-150 میلی متر کاهش خواهد داشت. در سطح 25 درصد دما 1/2-25/2 درجه افزایش، مقدار بارش در برخی نقاط کاهش و در برخی دیگر تا 50 میلی متر افزایش را نشان می دهد. در سطح 50 درصد، دما تقریبا 2/1 درجه افزایش خواهد داشت، و در مورد بارش نیز افزایش مقدار پیش بینی می شود؛ به طوری که مقدار بارندگی سالانه در منطقه با مخاطره 50 درصد، تقریبا بین 525 تا 350 میلی متر پیش بینی می شود.
    کلیدواژگان: تغییر اقلیم، درون یابی، ریزمقیاس نمایی، عدم قطعیت، مقیاس الگو، AOGCM
  • محمد جغتایی، علیرضا محب الحجه صفحات 209-221
    توسعه هسته دینامیکی هیدروستاتیک برای مدل گردش کلی جو بر مبنای تاوایی پتانسیلی با الگوریتم فرابرد پربندی نیمه لاگرانژی دررو مورد بررسی قرار می گیرد. خطی سازی معادلات بسیط با مختصه قائم تعمیم یافته حول حالت پایه ساکن امکان استخراج مدهای قائم و استفاده از آنها برای طراحی و پیاده سازی طرحواره گام برداری زمانی نیمه ضمنی را فراهم می کند. استفاده از متغیرهای پیش یابی تاوایی پتانسیلی، واگرایی سرعت و تقریبی از واگرایی شتاب در توسعه هسته دینامیکی، مستلزم حل معادله ای بیضوی از نوع هلمهولتز پیراسته در محاسبه ضخامت فشاری لایه های ایجاد شده میان ترازهای متوالی است. استفاده از تصویر به فضای مدهای قائم حل این معادله بیضوی را هم تسهیل می کند. در حل عددی، طرحواره های طیفی در راستای مداری، مرتبه چهارم فشرده در راستای نصف النهاری و نیمه ضمنی با سه تراز زمانی به کار می رود.
    در این پژوهش، مدل ساخته شده بر مبنای تاوایی پتانسیلی در مختصه قائم تعمیم یافته و استخراج مدهای قائم در مدل با موفقیت از عهده آزمون ناپایداری کژفشار بر می آید. در آزمون صورت گرفته با دو لایه، حالت اولیه جت متوازنی است که ناپایداری آن با یک پریشیدگی کوچک به راه می افتد. نتایج حاکی از شکل گیری و توسعه امواج کژفشار در طی 30 روز انتگرال گیری عددی برای شارش حدی با عدد فرود نزدیک یک است. آزمون موفق صورت گرفته، زمینه را برای آزمایش کامل مدل درحکم یک هسته دینامیکی در آرایشی نزدیک تر به واقعیت با تعداد زیادی لایه و برهم کنش با سطح زیرین فراهم می کند.
    کلیدواژگان: مدل گردش کلی جو، مختصه قائم تعمیم یافته، مدهای قائم، مدل برمبنای PV، هسته دینامیکی، جت ناپایدار
|
  • Morteza Fattahi, Nina Ataei, Nasrin Karimi Moayed Pages 1-16
    Gowk fault which is located west of the Lut-block east of Iran is one of the main and active structures in the region. To estimate the activity of this fault, we need to calculate its’ slip rate. The South part of the Gowk fault passes through the Golbaf Lake and has displaced the rivers which have cut the lake. The displacement is around 30 meters and if we can find the time of displacement we can then calculate the slip rate. One of the most useful methods to date the Quaternary sediments directly, is Luminescence dating. This method has been widely used and the range of materials that can be dated, using different procedures of luminescence dating, is being developed. In this paper, we are presenting part of the research which was done to sort out the problems that we had for dating the samples that were collected from the Golbaf lake. To measure the age of the samples, two parameters are needed; the equivalent dose and the dose rate. To determine the equivalent dose, the single aliquot regenerative dose (SAR) protocol was used. In this method, after measuring the natural signal, the sample is exposed to different known doses in the laboratory and the related luminescence signal is measured. Then, a standard growthcurve is built, which the equivalent dose can be calculated from. To examine the suitability of the SAR protocol in dating the collected samples, the capability of this method in order to recover a known laboratory dose was investigated. We confronted some unexpected results while recovering the dose because the determined dose overestimated the certain given dose in the laboratory by around20 percent. Three possible reasons were considered: methodological factors which can influence the determination of the equivalent dose, physical processes affecting the luminescence signal and technological factors(the measurement device).The first two reasons were assessed experimentally (according to tables 1 and 2). Thirty aliquots were built from the GB3 feldspar sample and the Risoe automated TL/OSL DA-15 reader was employed for all experiments. The first 15 aliquots were used for determinations according to the left column in table1 (the cut heat is fixed). The natural signal was depleted and after 10 hours gap, the signal was measured again (Figure1). Then, all samples were exposed to 26 Gy dose (assuming as the natural dose), the procedure in the left hand side of table1 was followed to test the capability of SAR in recovering this dose. In table1, Lx shows Ln (natural luminescence signal) and LR (regenerative luminescence signal) and Tx shows Tn (natural test dose signal) and TR(regenerative test dose signal).The results in figure2 demonstrate that, the recovered dose is more than the given dose by approximately 20% (about 30 Gy).After that, the same procedure was followed for the next 15 aliquots according to the right column of table1, but with equal preheat and cutheat. The results are shown in figure3 which is the same as figure2.We then repeated one stage of the SAR protocol five times for each aliquot using a fixed dose and expected that the results for all to be similar. This stage was completed according to table2 for four aliquots. The results are shown in figures 4, 5 and 6. As is shown in figure 4, the first signal consists of more photons in comparison with the other signals. Figure 5 shows the regenerative dose and the test dose curves for the four aliquots in five cycles. As is clear in the diagram, the first point of the regenerative dose curve for all the four aliquots are more than the other points in the curve, for both IR and Post-IR methods. Figure 6 shows the Lx/Tx ratio. It can be explicitly seen that the first stage is 40% more than other stages. As all the luminescence signals following the test doses (Tx) are almost similar, this 40% difference cannot be due to sensitivity change. The above experiments show that electron exchange from heat-sensitive traps to light-sensitive ones because of the preheat effect cannot be the reason for the dose recovery overestimate, since both IRSL and OSL signals measured 10 hours after natural measurements, are negligible in compare to natural signals. Electron exchange from the light-sensitive traps to the heat-sensitive ones due to laser light and subsequently in the opposite pattern cannot be a possible reason since all the standard growth curves pass through the origin (figure 7).Incomplete evacuation of the electrons because of inadequate intensity and time of the laser beamis not responsible for the dose recovery overestimate because laser beam has been similar for all the stages through the experiments. Inability of the SAR protocol to correct the sensitivity according to heat, dose and light is not the case since the SAR method has provided almost similar result for the last four stage of figure 6. As the methodological and physical factors could not be the reason for overestimating the recovered dose in the laboratory, we focused on the third factor, technology. Although the device (TL/OSL DA-15 reader) is claimed to be complete and without any defect, some reports of its failure has been presented. The effect of the dose and light on adjacent aliquots as reported by Bray et. al (2002), was found to be responsible for dose overestimation. This is because of the packed arrangement of aliquots on a disk. Since we wanted to investigate and eliminate the possible effect of the radioactive dose and the laser beam on adjacent aliquots, we decided to rearrange the aliquots. So the same procedure presented in tables 1 and 2 was followed for aliquots 1, 4, 7, 10 and 13. The results have been shown in figures 10 and 11. Figure 10 shows the result of repeating a cycle for these aliquots. This figure demonstrates that there was not much sensitivity change for the sample in this case. Figure 11 shows that the SAR method was capable of recovering the dose properly at different temperatures, but 2400 and 2800 are the most suitable temperatures in this case. So the problem was solved by putting the aliquots in every two other positions, and the SAR protocol could recover the given dose properly. We repeated this procedure by setting the aliquots in every other position too and the results were the same. Based on above result we put the natural aliquots in every other position and determined the age of the GB3 sample. This procedure provided an age of 4100 years for this sample. Similar approach was considered for calculating the age of other samples from the same site. Detailed information about the process of dating and the slip rate of Gowk fault could be found in the paper ‘Determination of the slip rate on the Gowk fault’ by Fattahi et al. (submitted).
    Keywords: Adjacent aliquots, Recovery dose, SAR method
  • Earthquake swarms, introduction to the records in Iran
    Mohammadreza Ghasemi* Pages 17-29
    Earthquakes usually occur not as separate individual events, but they usually constitute parts of an earthquake sequence with different but defined characteristics. Earthquake swarms include earthquake sequences, which start gradually and end gradually with no dominant earthquake in the sequence in terms of magnitude. Study of earthquake swarms of the world has started from about half a century ago. The first stages of these studies suggested that earthquake swarms are closely related to volcanic regions, and upwelling of pore fluids. It was also suggested that this kind of sequences occur in regions with strong strength gradients. Non-double-couple focal mechanisms are reported to be associated with earthquakes in geothermal regions and with earthquakes related to tensile faulting resulted from pore pressure in geothermal or volcanic areas. Some other various subordinate settings are also suggested for earthquake swarms. They include settings related to geothermal regions, thrusting, releasing stopovers, pull-apart basins and mud volcanoes. Some earthquake swarms are suggested to be triggered by a distant major earthquake in distant regions. Most of earthquake swarms are not accompanied by surface ruptures; however some exceptions have been reported from California in United States. Due to their relatively small magnitudes, the earthquake swarms have been less considered by researchers in Iran, although some of them have caused damages and destructions. This research studies 24 events of earthquake swarms that have occurred during the historical and instrumental periods of seismic activity in Iran, and tries to investigate their general characteristics and geological settings. The earliest accounts of a historical earthquake swarm in Iran probably dates back to 1482 A.D., when a sequence of foreshocks jolted the western Makran region in southeastern Iran for about 3 months; the earthquakes culminated in a destructive earthquake of 1483 A.D. in Hormuz Straight. Two sequences of earthquakes in 1819 and 1856 A.D. caused destruction in the Tabriz region of northwestern Iran. One of the deadliest earthquakes in Zagros region (Qir-Karzin earthquake of 1972, Ms=6.9) was preceded by a sequence of small and moderate earthquakes which had started about one month earlier. Results of this research indicate that most of the earthquake swarms in Iran occur in Zagros (54%), then in southern central Alborz (17%) and Azarbayjan (17%) areas. The rest are observed within Central Iran, Makran and Eastern Iran. It is interesting that despite their seismotectonic activity, the Eastern Iran and Kopeh-Dagh regions are not associated with important earthquake swarms. This may be related to a rather continuous seismogenic layer as compared to other parts of the Iranian Plateau. Earthquake swarms in Iran are observed both independent and related to the larger main shocks. Duration of occurrence of the earthquakes depends on to the general size of their magnitudes, and varies between 2 days for earthquakes smaller than 2.3 to more than a year. The longest sequence in Iran occurred after the Western Marivan earthquake of 1946, which lasted for 398 days. Number of reported events within an earthquake swarm sequence varies between 6 and 236, and even reportedly 1200. Size (diameter) of the epicentral region in which earthquake swarms occur varies between 12 and 146 km. None of the studied events in Iran, even those close to the volcanic regions, show any clear relationships to volcanic activities or upwelling of pore fluids. The only exception may be the Arak earthquake swarm of 2012, where thermal spring in the region may suggest some relationships with upwelling of pore fluids. The b value for the events in the Arak area does not deviate very much from 1, despite the early suggestions by some researchers of values greater than one for earthquake swarms. Spatial distribution of the Arak sequence does not conform to any planar (tectonic) structure at depth. Depth distribution of the earthquake swarms in Iran indicates that all of them have occurred within the crust. We suggest detailed study of focal mechanisms for the events in earthquake swarms of Iran to discriminate events related to earthquake faults from those which may be related to fluid injection at depth. In some regions, such as Zagros, earthquake swarms may be related to the mechanical discontinuities within the crust. Statistical analysis of earthquake swarms in Iran indicates that the cumulative magnitude of earthquakes within a sequence does not exceed more than 0.5 unit over the largest event of the same sequence. Statistics on magnitude, number of events, spatial and temporal distribution characteristics of the earthquake swarms in this study provide a ground on which seismologists may investigate this type of seismic activity in more details, and discriminate between the earthquake swarms and mainshocks or foreshokes.
    Keywords: Earthquake swarms, Earthquake sequences, Zagros, Alborz, Azarbayjan, Volcanic regions
  • Mehrdad Soleimani Monfared*, Hashem Shahsavani, Jurgen Mann Pages 31-44
    A seismic survey in a geothermal site near the Karlsruhe city in Rheine river graben in Germany was performed to provide a detail map of structures for geothermal usage of that area. The geothermal site uses the enhanced geothermal system (EGS) for power generation. The EGS system needs a hot dry rock (HDR) in depths with a spread system of faults and cracks. An injection well, injects the surface water to the fractured hot rock and water pass through the fractures and faults and becomes hot. Then two pumping wells will pumps up the hot water to the surface. One of the pumping well in that site did not perform with efficiency that was planned for. The problem might be due to the impermeable rock between injection well and pumping well in that part of the hot rock. Therefore mapping the faults, major or minor ones, and the boundary of the layers is an important task in that project. It should be mentioned that before the surface seismic project, a vertical seismic profiling (VSP) was performed in that well that due to the high temperature in well, the receiver sounding devise was failed and no data was gathered. The second VSP project even with thermal resistant devise was also failed. Therefore obtaining a reasonable seismic image of that part was so critical for stopping or continuing the geothermal activities there. Then a surface seismic project was planned with two 2D seismic lines. However, seismic imaging in such faulted regions is among the crucial task by conventional methods. The CMP stack followed by DMO and post stack migration and prestack depth migration (PSDM) were both performed on the data. Result of the conventional post stack time and depth migration was not so ideal that interpreter could trace the minor faults on the final section. PSDM method also needs an accurate velocity model that would be obtained by so much effort. However, the prestack depth migration was carried out and faults could be traced in that section. However, the seismic image has some ambiguities in interpretation and the velocity model was not fully trustable. Therefore it was needed to use new imaging method for seismic imaging in such media. The common reflection surface (CRS) stack is among the new methods for seismic imaging. It has some advantages that make it usable for imaging in such regions. It is also independent from macro velocity model. Therefore, accuracy of the velocity model is not a big concern here. The CRS stack method also gives three kinematic wavefield attributes that could be used for further interpretation. These attributes relates to the dip, curvature and depth of the reflector. The best advantage of the method is that it gives an enhanced section for migration correction. The CRS stack method use a higher order of traveltime equation rather than the CMP stack method. Therefore the CRS stack operator works on a surface in time domain rather than on a trend. These properties make the CMP stack method a special case of the CRS stack method. Moving to a higher order traveltime equation will dramatically increase the signal to noise ratio in the final section. Höcht (1998) derived equations that give the traveltime of ray by kinematic wavefield attributes, known as CRS equation. In his calculation, the second order of travel time for t2, is known as CRS stacking operator: (1) where RNIP, RN and α are CRS attributes, V0 is the near surface velocity and X0 is the point of the emergence of the central ray. As it could be seen from the equation, this equation does not need any information about the velocity model of the subsurface, and only knowing the near surface velocity would be enough. Then the CRS stack method was performed on the data. The result of the CRS stack method was comparable to the result of PSDM. It should be noted that in the CRS stack method, an accurate velocity model is not necessary and the final section has better quality. However, in the CRS stack processing chain, mapping the position of faults was difficult due to the problem of conflicting dips that exists at the end points of faults. Therefore a new method was developed here designed especially for imaging the faults or any type of discontinuity in the reflectors, while preserves advantages of the CRS stack method. To achieve this goal, the idea of diffraction stack migration in Kirchhoff migration was used to modify the CRS stack operator. To have an idea about how the CDS operator works, consider a segment of a reflector in a predefined position in zero offset (ZO) section. This segment would be defined by its related wavefield attributes on that point. Now consider a hypothetic diffraction point exactly at the same point (in the middle of the segment). The ray path for diffraction and reflection in that point would be the same for both situation and the traveltime and emergence angle are the same, too. In the literature of the CRS stack method; we can see that the parameter RNIP is independent from the curvature of the reflector in the point of imaging. Soleimani and Mann (2008) proved that the Kirchhoff migration operator is a special case of the CRS operator with RNIP=RN. In other words, if the CRS stack operator for an arbitrary reflector segment is known, an approximation of the associated Kirchhoff migration operator is readily available by substituting RNIP for RN in equation. To perform diffraction stack migration on the CRS stack method, the operator should switch from reflection response to diffraction ones. Therefore the method could be called common diffraction surface (CDS) stack method. The new introduced CDS operator will gather all of the diffracted energy in the data. The CRS stack method gives the priority to the most coherent event for producing the operator in (xm,t,h) space and will have only one stacking surface, while the CDS stack, does not put any criteria for selecting the surfaces. Otherwise there is a risk to lose a relatively weak diffraction that is masked by strong reflection. Thus, there would be no image of the geological phenomena that was responsible for that lost diffraction in final migrated section. It is the reason of not imaging faults or discontinuity in the layers in most of the seismic imaging method. To preserve all diffraction shown in (xm,t,h) space, there would be as many as operators according to the number of diffraction in that space. To switch CRS stack traveltime to the diffraction CDS stack, the following combination between two kinematic wavefield attributes was considered and the new attribute (RCDS) was derived: (2) where. The new introduced method was applied on the data. Like as the conventional method, the first section obtained in the processing chain was the stacked section by CDS method. In the CDS stacked section, the quality of the section was not improved well. However, as it was mentioned, the advantage of this method would be clearer in the migrated section. In the next step, all the stacked sections obtained by the CMP, CRS and the CDS methods have been migrated by the Kirchhoff post stack depth migration. In the migration section that was obtained by migration correction on the CDS stacked section, more reflection events and more faults were imaged with better quality. In comparison to the post stack time migration on conventional method and CRS stack method, the CDS stack operator even with a smooth velocity model could gather more diffracted energy for imaging than the other migration operators. The final CDS migrated section is of a better quality and contains more detail about the location of the minor faults. The result of this migration is also comparable with the PSDM result. In some cases, the new method could image faults better than the PSDM result. It should be mentioned that the post stack depth migration applied on the CDS stacked section, needs only a smooth velocity model that would be easily obtained. With detail geological interpretation on this section, the results show that the region contains many small faults that transfer the pumped water from injection well through the hot rock to the steam extraction well.
    Keywords: Geothermal energy, Common reflection surface, Common diffraction surface, Migration, Seismic imaging
  • Saber Jahanjooy, Hamidreza Siahkoohi*, Ramin Nikrouz Pages 45-60
    Discrete Fourier Transform (DFT) is the basic part of various algorithms of signal processing in many fields of science and technology. For analysis of signals with DFT, the length of discrete signal must be finite so signal to be analyzed must be divided to some windows. Consequently, spectrum leakage appears in frequency domain. Energy leakage of DFT spectrum can also occur due to non-uniform sampling in time or spatial domain and usually is more serious. The leakage can hide smaller spikes among actual spectrum and is an important factor that affects spectrum estimation. In practice, we should try to reduce the energy leakage of DFT spectrum to improve the resolution of frequency spectrum. For evenly sampled signals, suppressing approaches of spectrum leakage are diverse; most common method among them is windowing method. Study on how to suppress spectrum leakage of non-uniform Fourier transform is important both in theory and practice. Here we introduce and apply an anti leakage Fourier transform (ALFT) algorithms for suppressing spectrum leakage of non-uniform Fourier transform, improving the resolution of temporal frequency spectrum or spatial wave number spectrum. One of the areas of study that has the same problem is seismic exploration technology. Seismic data sets are generally irregularly sampled in inline midpoints, cross-line midpoints, offset and azimuth. This irregular sampling can limit the effectiveness of high end 3D de-multiple and imaging algorithms such as 3D surface related multiple elimination, wave equation pre-stack depth migration and many other processes. To overcome this issue, it is common in seismic data processing to use regularization and interpolation. Interpolation processes fill the missing traces and regularization transfer traces from their irregular recorded location to locations on a regular grid. We apply ALFT for seismic data interpolation and regularization that leads to reconstruction of seismic data on a regular grid. ALFT is an iterative algorithm that acts on frequency slices and reconstruct each temporal frequency spectrum along spatial dimensions. For an input data with N_p known samples, the original algorithm of ALFT can be performed as follow: 1- Computing Fourier components of the data using equation 1. (1) 2- Selecting the largest coefficient and adding it to the precomputed coefficients. 3- Updating data by subtracting the contribution of selected coefficient (equation 2) from input data (equation 3). (2) (3) 4- Iterating steps 2 and 3 until reaching the threshold. The idea of ALFT is simple and intuitive: first seismic data will be transformed to f -x domain, by applying DFT the f -k spectrum of data will be estimated. The largest Fourier coefficient is selected and subtracted from the input data. In the subsequent iterations, successive maximum components are subtracted until the norm of the residual is negligible. This iterative processes is able to recover a sparse spectrum that, when evaluated at sampling points, approximates regularly sampled data. This method relies on the common assumption that sparsely sampled data can be represented by a few Fourier components. ALFT can handle pure non-uniform seismic data and uniform seismic data with gap and missing traces. For regular data sets, by applying an anti-alias mask ALFT can handle steep dips. Generalization of ALFT to higher dimensions is simple and straightforward and for high dimension data ALFT can reconstruct very sparse data sets. Performance of the method was tested on both synthetic and real seismic data. We applied ALFT algorithm to reconstruction of synthetic and real seismic data sets. The results show the effectiveness of ALFT in interpolation and regularization of input data on any desired regular sampling grid. Compared to those interpolation methods that use FFT, ALFT has a slow procedure. However, computing the DFT’s in small windows of data sets, greatly reduces the computational cost of the algorithm. On the other hand, when the input data sets are sampled on a regular grid which has missing traces or gaps, one can use FFT instead of DFT to compute Fourier transform. ALFT reconstruction method suffers much less from edge effects and gibs phenomenon. The sequence of computing Fourier coefficients from maximum energy to minimum energy, and subtraction of contribution of them from remained data, plays a key rule in ALFT algorithm.
    Keywords: Anti, leakage Fourier transform, Non, uniform sampling, Spectral leakage, Seismic data interpolation
  • Mohammad Reza Azad, Mohammad Koneshloo*, Abolghasem Kamkar Rouhani Pages 61-72
    Considering this fact that chromite masses possess high density, the gravity method is the most common geophysical method suggested for prospecting of chromite deposits. Usually, the result of superposition of several factors is observed in the acquired datum, which includes different spatial scales. The observed potential field could be assumed as the sum of the regional field, the residual field, and noise. Despite filtering out several factors to obtain a bouguer anomaly map from gravity survey data, the obtained values are still the result of superposition of several components; these components are different from the view points of scale and importance. Definition and recognition of these components are essential in interpretation of geophysical surveys. There are various methods for processing and interpretation of bouguer gravity anomaly maps. These methods, e.g. potential field filters, are mostly based on mathematical analyses using trial and error technique. There are many different methods concerned with separation of the regional and residual components from the gravity map. Upward continuation technique is frequently used to identify regional anomalies and gravity variations of deeper recourses. The upward continuation is a general filter in processing geophysical data that can remove or considerably lessen the contribution of high-frequency, near-surface, shallow causative bodies from the gravity field, resulting in a smooth field reflecting the deeper causative bodies and/or density structures. This method is applied to separate a regional anomaly from the observed gravity. This filter is a low pass filter since the residual component, which is concerned with local anomalies, can be assumed as high frequency part of the signal. The main weakness of usual potential field filters comes from the fact that they cannot take into account spatial structure of components while filtering them. Spatial structure of a variable is an indicator of the amount of data correlation with respect to the distances between the data. Factorial Kriging analysis (FKA) is principally a geostatistical filtering method that includes classic factorial analysis and geostatistics. The FKA method consists of three basic steps: variogram, factorial analysis and Kriging/co-Kriging. This method computes of the experimental variograms to choose the number of spatial scales to be considered and fit by theoretical models, (generally linear model of regionalization/coregionalization), applies the decomposition method on variance-covariance/variogram matrix of spatial components (generally principle component analysis/spectral decomposition), estimats the regionalized factors in order to determine the relative contribution of each factor for the estimation of a particular location and mapping. Factorial Kriging decomposes the raw variable into as many components as the identified structures in the variogram. The basic step in FKA is experimental variogram calculation and fitting a valid model to this variogram. If the variogram is nested, it can be represented as a combination of several individual components variograms. The FKA method includes two types of univariate and multivariate. In the case of a geophysical variable, the univariate type is applied. Therefore, the variogram in this case can be written as a linear combination of its components. In this research, the gravity data, acquired from Faryab chromite mine area, are processed and interpreted using the FKA method. Based on this study, three components, which may represent regional, local, and noise components are defined and filtered based on spatial structure study. Moreover, two locations are proposed for further detailed exploration considering the extracted local component map. Also, the gravity data are processed using potential field filters. In this regard, different heights are considered in the upward continuation filter method applying on the gravity data, and then, the results are shown in the relevant maps. Low value gravity anomalies can be interpreted as the geological structures having low density or special geometric shapes such as a geo-anticline. High value gravity anomalies can be considered as densie masses like chromite lenses. Finally, in this research work, the obtained results from applying the FKA method on the gravity data are compared with the potential field filtering results using the upward continuation filter method. The basic difference between the upward continuation and the FKA methods is that the latter method takes into account the spatial structure of the data while the former does not. This study clearly indicates the capability of the FKA method in filtering gravity data.
    Keywords: Gravity, Filter, Spatial Structure, Factorial Kriging Analysis (FKA), Faryab chromite mine
  • Faezeh Bahrami, Vahid Ardestani Pages 73-82
    The gravity method is one of the first geophysical techniques used in oil and gas exploration. An algorithm is developed for a fast quantitative interpretation of gravity data generated by geometrically simple but also the estimated depths and other model parameters of a buried structure. Following Abdelrahman et al (1989). The general gravity anomaly expression produced by a sphere, an infinite long horizontal cylinder and a semi- infinite vertical cylinder can be represented by the following equation (1) where and z is the depth of the body, xi is the horizontal position coordinate, σ is the density contrast, G is the universal gravitational constant and R is the radius and q is factor related to the shape of the buried structure and is equal to 0.5,1.0,and 1.5 for the semi- infinite vertical cylinder, horizontal cylinder and the sphere respectively. Consider nine observation point (xi -4s), (xi -3s), (xi -2s), (xi -s), (xi), (xi +s), (xi +2s), (xi +3s), (xi + 4s), along the anomaly profile where s=1,2,3,M spacing units and is called the window length. Using equation (1) the simplest first numerical horizontal gravity gradient (dg/dx) (2) the second horizontal derivative gravity anomaly is obtainedfrom equation (2) as (3) the third horizontal gradient is(3) (4) Similarly, the fourth horizontal gradient is (4) 5) Which yields; Where (7) Equation (5) can also be solved using a simple iteration method. Equations (5) can be used to determine the depth and the shape of a buried structure using the window curves method. The validity of the method is tested on synthetic data white and without random errors. The method was applied to a gravity anomaly from the Abade of Iran. The results shows that the s-curves intersect each other in a narrow region where 7.220 Keywords: Gravity anomalies, Depth, shape estimation, Numerical fourth horizontal derivative, The s, curves method
  • Mahmoud Mirzaei, Mohammad Mohammadzadeh, Moghaddam, Behrooz Oskooi, Fereydun Ghadimi, Seyed Javad Jazayeri* Pages 83-96
    Ground magnetic survey was carried out in Mahallat region, Iran, as the first part of exploration and development of geothermal energy program conducted by Arak and Tehran universities. The magnetic method is useful in mapping near-surface volcanic rocks that are often of interest in geothermal exploration. The magnetic method has come into use for identifying and locating masses of igneous rocks that have relatively high concentrations of magnetite. Strongly magnetic rocks include basalt and gabbro, while rocks such as granite, granodiorite and rhyolite have only moderately high magnetic susceptibilities. The surface manifestations of thermal activity in the area are in the form of hot springs, hydrothermal deposits, thermal alteration, vast travertine outcrops and young volcanic rocks. In the geological dividing of Iran, Mahallat area is located in the volcanic zone of Central Iran. This zone has been one of active zones during the different geological periods that is located in Central Iran with triangle form. This area, from permeability aspect and by regarding to expansion of calcareous and dolomite units and also presence of cracks and joints, has a good condition. Also, with regard to presence of hot water springs and regard to geologic settings in the area, we can define it as one of important and suitable geothermal potential in Iran. Existence of many hot springs in Mahallat and also its special geology show a big probable deep geothermal system in the area. During activities performed since 1996 in Iran, few encouraging area with geothermal potential have been introduced by the Renewable Energy Organization of Iran and one of the corresponding areas is Mahallat. In order to delineate susceptible area with geothermal potentials accurately, ground magnetic survey was performed around hot springs of Mahallat. Total magnetic field data was collected along 10 profiles, with station distance of 40 m and profile distance of 1.5 km. During this survey, measurements were performed at over 4000 stations. In this research, magnetic data of magnetometry operations are interpreted by two practical
    Methods
    standard Euler deconvolution and AN-EUL. The standard Euler method is based on the Euler equation, and using this method in the depth estimation of magnetic anomalies inserts the geology of the region into the calculations. AN-EUL is a new automatic method for the simultaneous approximation of depth, geometry and location of magnetic sources. The principle advantage of this method is its combining both the analytic signal and the Euler Deconvolution methods. In this method, the determination of the source location is based on the position of the maximum value of the analytic signal amplitude. Results of depth estimation of the main source of the anomaly, from these two methods, have estimated existence of geothermal resource, with probable depth of more than 1000­ m and structural index of 1.8. Estimated structural index from these two methods shows that source of anomaly has a conical cylinder shape. Absence of negative magnetic pole in the area imply of extension of anomaly in depth. Results of this research also show that Euler method in addition to estimation of anomalous depth is also able to investigate trend of depth variations in different position of the anomaly, while AN-EUL can only estimate depth in special position. Gravity, resistivity and MT surveys and also exploratory drillings over the interpreted geothermal anomalies in the area are suggested for the future assessment of geothermal energy in the region on an industrial and scientific scale.
    Keywords: Geothermal resource, Hot springs, Magnetic survey, Mahallat region
  • Milad Takalu, Behrooz Oskooi*, Soheyl Porkhial Pages 97-108
    Geophysical methods play a key role in geothermal exploration since many objectives of geothermal exploration can be achieved by these methods. The geophysical surveys are directed at obtaining indirectly, from the surface or from shallow depth, the physical parameters of the geothermal systems. The other geophysical techniques like gravity, magnetic, self-potential studies, and shallow seismic refraction also provided valuable information about the shallow geothermal zone. The earlier magnetotelluric (MT) that was survey carried out (Singh and Drolia, 1983), provided qualitative information with limited narrow band data and limited quantitative result due to noisy electric field data. Due to both limitations in interpretation methods and the cost of data acquisition, magnetotelluric (MT) data have been traditionally obtained in profiles targeted to the geology, and then interpreted with two-dimensional inversion. In such an interpretation, one fits the off-diagonal impedances (Zxy and Zyx), generally after rotating the coordinate system so that the main diagonal components (Zxx and Zyy) are minimum, or at least small. It is seldom possible to find a single strike angle that is optimal for the full frequency range and for all sites, and possible impacts of off-profile structure must always be considered. MT is an appropriate tool for identification of the deep subsurface structures. In this method, recording the erpendicular to horizontal components the fluctuations of the magnetic and electrical fields are measured at the earth surface. Using these measurements, the electrical conductivity distribution can be determined. Geothermal resources are ideal targets for EM methods since they produce strong variations in underground electrical resistivity. Geothermal waters have high concentrations of dissolved salts that result in conducting electrolytes within a rock matrix. The resistivities of both the electrolytes and the rock matrix (to a lesser extent) are temperature dependent in such a way that there is a large reduction in the bulk resistivity with increasing temperature. The resulting resistivity is also related to the presence of clay minerals, and can be reduced considerably when clay minerals and clay-sized particles are broadly distributed. On the other hand, resistivity should be always considered with care. Experience has shown that the correlation between low resistivity and fluid concentration is not always correct since alteration minerals produce comparable, and often a greater reduction in resistivity. Moreover, although water-dominated geothermal systems have an associated low resistivity signature, the opposite is not true, and the analysis requires the inclusion of geological and, possibly, other geophysical data, in order to limit the uncertainties (Spichak, and Manzella, 2009). Geothermal energy has been harnessed by using the steam or hot water stored underground at high temperatures and pressures for the generation of electric power in conventional steam turbines, and by the direct use of the heat content of the resources in heat exchangers in industrial or domestic utilizations. Temperature and the circulation of subsurface hydrothermal fluids, both of which are characteristic features of geothermal systems, are capable of generating a surface electrical potential field. Such electric fields are the result of streaming potential, caused by the movement of hydrothermal fluids around the subsurface heat source (Fitterman and Corwin, 1982). Based on hydrodynamic geothermal sources, the flow can play the role of on initial parameter in the resistivity contrast of the geothermal source and its surrounding. using this feature, MT is capable of determining the boundary between geothermal system and the neighboring medium. In order to investigate more closely Sabalan geothermal reservoirs and determine the injection and exploration wells, the magnetotelluric data was scheduled in two phases. The first phase was carried out at 28 MT stations in 2007. The second phase 50 magnetotelluric stations were taken in 2009. MT measurements, in Sabalan area, could clearly highlight the geothermal reservoir. The results of the MT survey are presented through isoresistivity maps sliced at different elevations to show the resistivity changes with depth, and through cross sections to show the resistivity structures that were modeled. The changes in resistivity with elevation and observed resistivity layers are discussed in detail. Interpretation of these results will help in delineating the arbitrary boundaries geothermal resource at Mt. Sabalan and pinpoint the best drilling targets in the area. After dimensional analysis using skew parameters (for skew below 0.2) study area shows a two-dimensional behavior. After removing data outside of category that caused by environmental noise, magnetotelluric inversion was performed. The aim designing of the two profiles S01 and S02 including some part of reservoir and we also wanted to S01 profile to pass the exploration wells. Profiles S01 and S02 cover the Moil Valley and the present development block of the Mt. Sabalan Geothermal Project. Along the profile S01, resistivity of the top layer varies from 50 to >250 Ω-m. An anomalous conductive layer extending from Moil Valley to wells NWS-7D and NWS-8D was observed to about 1000 m above sea level (a.s.l.) This conductive layer has a thickness of about 500-1000 m and is underlain by a moderate to highly resistive layer with resistivity values >50 to 250 Ω-m. Along the profile S02 two conductive zones (<30 Ω-m) are detected, one within the well NWS-7D, in the western portion, beneath MT stations 249 and 24, and another one beneath station 216, on the eastern portion. The conductive anomaly on the west is part of the conductive layer observed in P01. A high resistivity block (>100 Ω- m) is modeled separating the conductive zones, its boundaries marked by steep resistivity gradients. The shallowest portion of this resistive body is found beneath stations 109, 219 and 218, at elevations of about 1500 m a.s.l. The resistivity sections derived from 2D inversion in conjunction with exploration wells and geology surveys showed that Sabalan geothermal system is in agreement with Johnston’s studies (1992) in which the thicker conductive layers are found in the outer areas.
    Keywords: Magnetotelluric, 2D Inversion, Geothermal System, Johnston's Model
  • Samaneh Sabetghadam, Farhang Ahmadi, Givi, Yahya Golestani, Abasali Aliakbari, Bidokhti Pages 109-122
    Atmospheric visibility has been defined as the greatest distance at which an observer can see a black object viewed against the horizon sky, which in quantitative terminology is known as visual range. Visibility, in the absence of special meteorological events (e.g. rain and fog), is an excellent indicator of air quality. Visibility impairment results from light scattering and absorption by atmospheric particles and gases that can originate from natural or anthropogenic sources. It is an important factor in everyday life mainly in aviation industry and surface traffic. Air pollution in big cities, which is a serious environmental problem, especially in developing countries, may cause remarkable visibility reduction. Much of emphasis in the recent atmospheric visibility studies has been to establish the factors contributing to visibility reduction. Since the factors used to determine visibility impairment, including absorption and scattering of incoming light, depend on time and location, then it should be studied on local scale. In this paper, the effect of different air pollutants on horizontal visibility is presented in the south-west of Tehran for 2008. Tehran is a highly industrializes and densely populated city in our region that is well-known for its air pollution problem. The data used in this study are based on midday measurements of meteorological quantities such as horizontal visibility distance, relative humidity, wind speed, present weather code, dew point and wet bulb temperature performed at Mehrabad synoptic station. Moreover, intensive measurements of particulate matter (PM10) and gaseous materials (e.g., CO, NO2, SO2, and O3), carried out in Tehran-Azadi-Square station, were used for further analysis. The monthly and annual changes in atmospheric visibility and air pollutant concentrations including SO2, NO2, and PM10, as well as their relationships with each other are studied. In order to focus mainly on the changes in visual air quality, the cases of visibility impairment that were concurrent with reports of fog, mist, precipitation or relative humidity of %90 or above were filtered from the visibility data using the present weather code that is a part of WMO synoptic coding system. Then both the yearly and monthly correlations between visibility and air pollutant concentrations were examined. The results from regular measurements of air pollutant concentrations indicate that air pollution in Tehran is severe in comparison with other cities around the world. The results of regression analysis also show that the most correlated pollutants with visibility are CO and NO2 followed by PM10. The fairly significant correlation between reduced visibility and NO2 concentration implies that the impact of primary emissions of NO2 and enhanced secondary pollutants, formed via photochemical processes in the atmosphere, that could not be ignored. The monthly analysis of visibility shows that the cold season is the most affected one by air pollutants and the significant anti-correlation is found between visibility and SO2 in this season. More detailed analysis presents the significant role of relative humidity on the correlation of visibility and pollutants, especially on SO2.
    Keywords: Visibility, Atmospheric air pollutants, Correlation, Tehran
  • Mohammad Hosein Shoushtari, Faezh Naji, Abasali Aliakbari, Bidokhti Pages 123-134
    Aerosol formation due to ions in the atmosphere is not well understood, although it seems to play an important role in cloud formation. The ions in the atmosphere can enhance cloud formation and can increase nucleation as well as impeding the evaporation from the surfaces of the droplets. Recently there has been some experimental work to find the relation between ions concentrations and cloud initiation. Experimental and field studies show that the classical nucleation theory cannot explain the formation of the aerosols at their early stages formation. Although some ideas have been given concerning this problem, e.g. ion-induced nucleation (Arnold 1980; Raes et al. 1986; Turco et al. 1998) and ternary nucleation (Kulmala et al. 2000). The experimental considerations of the role of aerosol formation by ions are also not wide spread, particularly those that can be applicable to the lower atmosphere. Along this line, we have studied this problem in the warm cloud in the laboratory. By warm cloud we mean that the experiments were carried out at room temperature. In these experiments the role of ions in warm cloud formations is studied in a cloud chamber of 20 liters in the laboratory. Ions were produced by a strong electric field in the chamber. The ion concentration is controlled by the time of ionization of air between two electrodes. The cloud concentration was also measured by the attenuation of a laser beam going through the cloud chamber. With cloud formation the opacity of the chamber was changed, so that with the increase of cloud concentration due the scattering of laser light by cloud droplets less light reached the detector, resulting in smaller laser signal. The laboratory facility for this study includes a cloud chamber, a laser beam (red with 598 nm) with a detector, signal amplifier, pressure gauge (water column manometer), temperature and humidity sensors of which their signals are digitized using a computer with an Analogue to Digital convertor, with typical sampling time of 0.5 of second. Cloud concentration is determined by fluctuations in the laser signal. Some 25 experiments were carried out with different ions concentrations. The warm cloud in the chamber was produced by an adiabatic the expansion of nearly saturated moist air. As soon as the expansion starts the cloud forms, although it takes a few 10s of seconds to clear off. The clearing times also seems to be dependent on the size of the cloud droplets, as they precipitate differently due to gravity. In this paper we report the results of experiments concerning ions with different concentration in the cloud chamber. Preliminary results show that as the ion concentration increases to some level the cloud formation is enhanced. But as the ion concentration increases more than a certain (optimum) value the cloud formation is hampered and we acquire less cloud with perceptible droplet sizes. We found that the over seeding process occurs as a result of increasing ion concentration more than the optimum value leading to less perceptible cloud. This leads to an increase of cloud clearing time after an optimum point.
    Keywords: Warm cloud, Ions, Modification, CCN, Heterogeneous nucleation, Supersaturation
  • Abas Ranjbar Saadatabadi, Parisa Izadi Pages 135-157
    Iran is located in arid and semiarid areas based on continental divisions; any change in precipitation would have potential effects on agriculture, economic and other related issues in general. Therefore, it is of high importance to know and identify the moisture-related sources needed to study the country’s precipitation data. For this purpose, it is important to correlate monthly precipitation with Sea Surface Temperature (SST) anomalies. The SST variations are responsible for a large portion of the atmospheric circulation and precipitation variability. Many studies have been done for empirical evidence of relationships between SST anomalies (deviation from the long-term mean) and rainfall anomalies (e.g., Tae-Suk and Moon, 2010; Uvo et al., 1998; Mechoso et al., 1990; Moron and Navarra, 2001; Shabbar and Skinner, 2004). This paper is mainly concerned with indentifying the relationships between the abnormalities seen in the Indian Ocean’s water surface temperatures and the ones seen in Arab sea. As apparently seen, it has not only some potential effects on moisture-based feeding but also on the ways, the climate scales and flows are being formed. To verify the relationship between Sea Surface Temperature Anomalies (SSTA) and rainfall over southern of Iran, by using ARPEG model output and divergence of specific humidity flux in the low levels of troposphere including 1000, 925, 850, 800 and 700 hPa, moisture resources and how the moisture is transfered to the southern parts of iran, were studied. The second step will be concerned with the study of the relationship between SST anomalies and precipitation. The basic data used in this study consists of, 1) mean monthly values of SST from Octebr to March for the years 1956- 2005 over the Arabian Sea and Indian Ocean; 2) mean monthly rainfall for 9 synoptic stations over southern of Iran. Because precipitation and SSTs exhibit strong seasonality, it is of interest to correlate monthly precipitation anomalies with the SST anomalies. To do this, correlation coefficients, between the SST anomaly of the three parts (Arabian sea, western and eastern Indian Ocean) and the precipitation anomaly for each month, were calculated. The results of case studies, based on wind and streamlines, vector and divergence of specific humidity flux show that the Arabian Sea, the Red Sea and Persian Gulf have to important role in feeding moisture to the southern Iran, and the maximum flux divergence were occurred in the lower troposphere (1000 and 925hPa) over these area. In addition, the maximum convergences were observed in the southern of Iran and the south east of Saudi Arabia. Monthly correlation coefficients between Arab sea SST anomalies and precipitation anomalies are summarized in Table 1. Correlation coefficients that exceed the weak threshold of relationship (above 0.30 or below -0.30) are highlighted in bold. No strong relationships (coefficients above 0.60 or below -0.60) were found, however some values do approach more than 0.40. The positive relationships have been found in October, November, January, and February at these stations. No stations exhibits significant (either weak, or strong) relationships in December and March (Table 1). Monthly correlation coefficients between the eastern Indian Ocean SST anomaly and precipitation anomaly are summarized in Table 2. Most of the stations have very little correlation between monthly rainfall and SST anomalies, as evidenced by correlation coefficient between 0.20 and -0.20. However, the coefficients do reveal a few interesting relationships. The positive coefficients (more than 0.30) are found in October at stations Abadan, Boushar, Shiraz and Yazd. There are not any significant relationships for December and March (Table 2). The correlation coefficients for the western Indian Ocean are found positive, in October in Yazd, in November in Ahvaz and in January in Ahvaz, Boushar and Bandar Abbas stations. No stations exhibits significant (either weak, or strong) relationships in December, February and March (Table 3). The data presented above reveal that precipitation anomalies over southern Iran are related to SST anomalies in both the Arab sea and Indian Ocean. However, this study found indications that positive relationship may exist for southern Iran in some months. The correlation coefficients were not randomly dispersed throughout the seasonal (October-March) precipitation. The most positive coefficients were found in the autumn months of October and November, especially for Arab Sea and eastern Indian Ocean in the winter months of January and February for Arab Sea and western Indian, implying that warmer than normal SSTs, are connected with increased precipitation. Only a few stations have positive coefficients in November and February. Also in December and March not any significant correlation werefound. Several possible reasons exist to explain these relationships. For the majority of sites in the southern Iran, precipitation has no strong relationship with SST anomalies of Arab and Indian Ocean in the all months (October-March). Precipitation is, in a basic sense, a function of local vertical motion and water vapor quantity. These two variables are influenced by a variety of global-, synoptic-, and meso-scale features, including planetary waves, mid-latitude cyclones, upper-tropospheric subsidence, mid-tropospheric humidity, local topography and other humidity sources. It is interesting to examine these for more sites and months that do exhibit positive correlations. The stations that reported positive correlations are mostly located in the south of Iran. So, positive SST anomalies can be considered as one of the forcing for increasing precipitation over the southern Iran.
    Keywords: Sea surface temperature anomalies, Precipitation, Correlation, Southern Iran
  • Majid Azadi, Mohammad Mahdi Khodadi Pages 159-175
    In this research energetics of the barotropic and baroclinic development for two planetary waves over eastern Mediterranean, Syria and west of Iran and their interaction with surface cyclones were investigated. Ahmadi-Givi et al. (1384) calculated and examined several selected important terms in the eddy kinetic energy (EKE) tendency equation during life cycle of six troughs that were developed with downstream development over Europe. They showed that almost for all cases the ageostrophic flux convergence (AFC) was the main factor in development of the systems. AFC causes radiative energy transport from upstream of the wave to the downstream of the trough. For mature baroclinic waves, this radiative energy transport causes dispersion of the upstream wave and forming a new wave downstream. Orlanski and Gross (1993) simulated the effect of topography on cyclone development over the Mediterranean using primitive equations. They showed that when mature troughs cross east-west Mountains, strong cyclones form over the south of the mountain and if the isotherms are also oriented in the east-west direction, baroclinic development is intensified. Northward advection of warm and moist air to higher latitudes accounts for baroclinic development and secondary development. In some cases baroclinic energy conversion between separated cyclones is responsible for the cyclone development (Chang, 2000). Decker and Martin (2005) examined the life cycle of two cyclones that had similar track over North America. They showed that the first cyclone intensified and damped much faster than the second cyclone. The reason for this is that the development and damping of the first and second cyclones occurred upstream and downstream of the trough respectively. Nasre-Esfahani et al. (1389) examined the effects of several important forcing terms in the EKE tendency equation for critical positive months (CPM) and critical negative months (CNM) of the North Atlantic Oscillation (NAO) over the Mediterranean and Middle East. Their results indicated that there is no considerable difference in the amount of EKE between CPM and CNM in the Mediterranean region. However, moving eastward, the values of EKE become greater in the CPM than in the CNM in such a way that the difference between the two reaches its maximum over the south west of Iran. Also, in the CPM, all of the computed forcing terms are larger than in the CNM. In this research, National Center for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR, Saha et al., 2010) data with 0.5 degree horizontal resolution, described by Saha et al., 2010 are used to extract several fields including geopotential height, horizontal wind vector, relative vorticity and temperature at several vertical levels. Thickness fields and several important EKE tendency forcing terms for 00, 06, 12 and 18 UTC for two case studies, that cover the period 14-18 January 2004 and 27-29 January 2000 are then calculated. Following Orlanski and Katzfy (1991), different forcing terms in the EKE tendency equation including baroclinic and barotropic conversions, zonal and eddy advections and AFC are derived. Time mean stress term is also calculated according to Decker and Martin (2005). Results showed that the first cyclone on January 2004 was formed over western Mediterranean. It was then weakened over the eastern Mediterranean and subsequently intensified in two other regions as it moved to the west of Iran. At the beginning, there was a strong energy center over Mediterranean associated with the polar jet at the upstream of the trough. Ageostrophic energy flux from this center to the downstream of the trough causes downstream intensification of the energy center east of the Mediterranean and west of Iran. It is shown that baroclinic energy conversion and ageostrophic flux convergence are the most important factors in the secondary development of the energy center over north of Saudi Arabia and east of the Mediterranean and subsequently over west of Iran. Increase of the energy tendency terms over eastern Mediterranean and Syria is due to the warm and moist air advection over the Red Sea and combination of the thermal Sudanic low and the low pressure situated at higher latitudes. Forced vertical motion over the mountain ranges located west of Iran accounts for the increase of the energy tendency terms. For the second cyclone on January 2000, similar to the first case, there is a strong energy center over the Mediterranean at the upstream of the associated trough. The subtropical jet causes a strong ageostrophic energy flux from the upstream energy center to the downstream of the trough and developing a downstream energy center over northern Saudi Arabia and west of Iran. Moreover, similar to the first case, warm and moist air advection over northern Saudi Arabia and eastern Mediterranean and subsequently forced vertical motion over the west of Iran are responsible for intensification of the baroclinic factor and downstream development of the energy center. But for this case, barotropic factor (such as Reynolds stress) is important for the intensification of the energy enter. Stated differently, the role of the subtropical jet in intensification of the cyclone over south of Iran is clearly seen.
    Keywords: Downstream development, Eddy kinetic energy, Barotropic conversion, Baroclinic conversion
  • Maryam Dousti, Mahmoud Habibnezhad Roshan, Kaka Shahedi, Mirhasan Miryaghoubzade Pages 177-189
    Global warming caused by human activity and climate change is one of the issues attracted that has attention of many climate scientists. The relationship between climate parameters should be used in climate change studies to understand the complex nature of the environment and predict changes in the future. The reliable tool to investigate climate change effects on different systems is using the climate simulations by coupled general circulation of atmosphere and ocean. These models are capable to model the oceanic and atmospheric parameters for a long time period using IPCC scenarios. Due to the low spatial resolution of down scaled phenomena, in general circulation climate models, these models cannot provide accurately approximation of climate conditions of study areas. Therefore, outputs of these models should be down scale to weather station. The use of statistical methods especially when lower cost and faster assessment of climatic factors is required, have more advantages and capabilities. These models downscale the large scale circulation data by using outputs of GSM models and applying specific scenarios that produce climate data. In this study a type of GCM model as HADCM3 for the period 2046-2065 was used. To simulate climatic parameters in Tamar Basin, the HADCM3 data downscaled using LARS-WG mode under A2 and A1B scenarios. Tamar river basin is located in Golestan Province north-east of Iran that have 1525.3 km2 area. There are a few climatology and rain gauges in Tamar river basin. Most of these gauges except Tamar station that have more than 40 years precipitation and temperature data have short inventory period data (15 years rainfall data and 8 temperature data). According to the International organization WMO standards which at least thirty years considered as reference period, therefore, in this study the Tamar climatology data that were recorded for 30 years were used. For this purpose the temperature and rainfall data of Tamar station In a 30-year period (1981-2011) Was extracted. Due to the lack of sunshine data in stations, the Maravehtappe synoptic data, located at 30 km from the centre of the basin, was used. According to the Tamar basin area and variation in hypsometry of basin and also Tamar station located at outlet of basin, the rainfall and temperature data collected in this station cannot present the whole of basin changes. To solve the mentioned problem the temperature data was generalized for the whole of basin using a gradient equation with the differences between altitude of the station and the average altitude of the basin. The rainfall data also after the hydrologic processing, was transfered to the average altitude of basin using gradient equation. So the 30 day data in the month was randomly selected and the minimum and the maximum temperature data based on Tamar, Rebat-e-Ghrabil and Cheshmekhan station that located at the outside of the basin was extracted. Also the rainfall data of Tamar station with Tangrah, Rebat-e-Gharabil and cheshmekhan that are located at the outside of the basin were used. Then according to the obtained data, the gradient related to 30 days for each year was plotted, and a relationship was obtained. Totally, 2700 gradient relationship for 30 year also for maximum and minimum temperature and rainfall data were generated. Then, 30 gradient relationships for the maximum temperature and the minimum temperature and the rainfall data were selected with the gradient relationship of each year with higher correlation coefficient. Then the gradient relationship for each year and according to the highest percentage of watershed area that was located in the same altitude of centroid of the basin was acquired. Maximum and minimum temperature data for each year were moved to the center of the basin and data corresponding to the height of centroid the basin for log to climate models were obtained. In this study, in order to down scale of the atmospheric general circulation model data HADCM3, the LARS-WG model which is one of the weather generator models was used. To run this model in this research, calibration period was selected between 1981-2011, years then the model was run after preprocessing the input data.In the next step the model was assessed with NSE and RMSE and MAE indices. Results show that the simulation data for this period are in good agreement with observation data. To evaluate climate fluctuations in the Tamar basin, general circulation model data were down scaled using LARS-WG model according to both A1B and A2 scenarios and thus the daily values of the parameters were generated. The results showed that the average temperature will increase under A2 scenario about 2.48 ° C and under A1B scenario about 2.43 ° C. Meanwhile the maximum temperature change will be higher than the minimum temperature change. From this subject we can conclude that the changes (increases) in the average air temperature in the future will be most affected by the minimum temperature. The results show that 16% increase in precipitation under A2 scenario and 2% rainfall under A1B scenario during 2046-2065 periods. Also, sunshine hours in the study period will be reduced under both scenarios. The results indicate that for the A2 scenario has the highest emissions of carbon dioxide, methane and nitrous oxide, higher temperatures and more rain are expected.
    Keywords: Atmospheric general circulation model, Downscaling, LARS, WG, Tamar, Golestan Province
  • Seyedeh Shima Pooralihosein, Alireza Massah Bavani Pages 191-208
    One of the most important impact of climate change is reduction of precipitation in some areas including Iran. Hence, climate change studies are essential in these areas. Besides, according to IPCC, some meteorological stations of Iran, such as Tabriz (capital of East Azerbaijan Province) have showed a downward trend in precipitation. Therefore, East Azerbaijan Province was selected as the study area in this survey. It is one of the north-western provinces with cold dry climate. Firstly, monthly temperature and precipitation observed data over 1981-2012 were gathered from 15 meteorological stations of the region, and they were produced for 0.5-degree cells by interpolation methods and selecting the most appropriate one based on the amount of corresponding errors (RMSE and ME). Thereafter, monthly precipitation and temperature data for 2013-2022 were projected using 16 Atmosphere-Ocean General Circulation Models (AOGCMs) under A2B, A2 and B1 SRES scenarios, and downscaled by Bias Correction/Spatial Downscaling technique at 0.5-degree cells. After applying pattern scaling method on monthly temperature and precipitation data, in order to produce future data under more scenarios, monthly climatic variables were calculated for 10, 25 and 50 percent risk, and risk analysis was done based on the computed parameters. The pattern scaling technique used in this study calculates the variable under a desired scenario, from the base scenario (A2 in this study) with a linear equation in which the global temperature rise was calculated by a model named MAGICC. Assessing observed climatic variables showed that western parts of the province had lower precipitation and higher temperature, while eastern parts had higher precipitation. However, south-western cells also experienced a better situation. Mean annual temperature over 1981-2012 was between 7.5-13.5 degrees Centigrade, and annual precipitation was 260 to more than 310 millimeters. Moreover, despite precipitation fluctuations over 1981-2012, annual precipitation of the first years is higher than the last years. After applying pattern scaling method and accessing future monthly precipitation and temperature data under 49 scenarios for 16 AOGCMs, temperature and precipitation boxplots of each month were produced for each month. Results showed that precipitation is right-skewed in all months and all cells. The outliers of March and April are less than others, while August outliers are numerous. Comparing boxplots of temperature and precipitation indicated that outliers of temperature data are much less than precipitation, i.e. uncertainties of AOGCMs and downscaling to project temperature are less than precipitation. The monthly precipitation and temperature data were calculated for 10, 25 and 50 percent risk and the monthly temperature-risk and precipitation-risk line charts were produced for each cell. The amount of monthly temperature and precipitation with higher and lower risk showed a significant difference. Furthermore, projections with lower risk have less difference and they indicate almost one prediction. According to the areal interpolated maps of the future mean annual precipitation and temperature, the least temperature will be around Sarab station, and the highest temperature will be near Malekan and Bonab stations. Furthermore, maps showed that the amount of temperature will increase by moving west. Moreover, by moving from high risk to lower risks, the amount of temperature increases about one degree Centigrade. Western regions will experience lower precipitation with all levels of risk, and the maximum annual precipitation will be seen in north-eastern spots. The difference between the predicted and observed temperature and precipitation with 10, 25 and 50 percent risk for each cell was calculated and their spatial distribution maps were produced by applying different interpolation methods and selecting the best method. It is predicted that temperature will increase 2.9-3.15 degrees Centigrade with 10 percent risk, and the rise amount is bigger in the western areas. Precipitation will decrease about 75 to 150 millimeters. Temperature will increase 2.1-2.25 degree Centigrade with 25 percent risk, and the amount of precipitation in some areas will be lower and in some others will rise even up to 50 millimeters. The temperature with 50 percent risk is projected to increase about 1.2 degree Centigrade, and precipitation will also aggrandize. In conclusion, the temperature increase in the next decade will be bigger in the southern areas of the province, and precipitation amount of north-western and western areas will experience higher precipitation. The results of this study confirm other research done by others before, indicating the least amount of observed precipitation was in Sarab station. By having these results for future periods the decision makers of this field will have a better vision, ad so they will be able to sufficiently plan for the future. In addition to this research, some suggestions are proposed as follows to improve and strengthen the
    Results
    (i) past and future drought assessment in the area with different drought indexes, (ii) presenting a more logic relationship between temperature and precipitation because of relatively low correlation between temperature and precipitation and so not being linear, or applying models ensemble and comparing the results with this survey, (iii) using daily temperature and precipitation instead of monthly data to improve the results.
    Keywords: AOGCM, climate change, Downscaling, Interpolation, Pattern Scaling, uncertainty
  • Mohammad Joghataei, Alireza Mohebalhoje Pages 209-221
    The development of the dynamical core of a potential-vorticity-based atmospheric general circulation model is explored. There are some advantages of using potential vorticity (PV) as a prognostic variable in that the resulting model can give more accurate simulation of the evolution of PV, as arguably the most fundamental dynamical quantity. Further, there is possibility of explicit representation of unbalanced part of the flow during time integration, though in an approximate manner, by making proper choice of the prognostic variables used alongside PV. In this way, the model is equipped with some built-in form of the balance relation for PV inversion, which helps to maintain the underlying balance. A closed set of equations is constructed using the variables, a PV-like variable described below, and which are, respectively, the horizontal velocity divergence and an approximate form of horizontal acceleration divergence. For the primitive equations linearized around a rest state, it can be shown that there is a direct correspondence between the Rossby modes and the Q variable, on the one hand, and between the inertia-gravity modes and the and variables, on the other hand. Linearizing the primitive equations in the generalized vertical coordinate around a resting basic state, the symmetric matrix relating the column vector of the time tendency of modified pressure to the column vector of horizontal divergence is found. Here, the modified pressure is defined by with and respectively, the perturbation geopotential, temperature and potential temperature, specific heat capacity at constant pressure and the basic state Exner function. The eigenvectors of are used to define the vertical modes and the projection of any given column vector from the physical space to vertical mode space and vice versa. This facilitates to generalize the Boussinesq PV-based multi-layer primitive-equation models to the corresponding non-Boussinesq set of equations. A PV-like quantity is defined by in which is the Coriolis parameter, the relative vertical vorticity, and the normalized perturbation pressure thickness. Here and are, respectively, the perturbation and the basic state pressure. The variable becomes the same as Rossby–Ertel PV whenever coincides with. Further, with the definition of modified pressure given above, the variable becomes equal to with the northward gradient of When coincides withbecomes equal to acceleration divergence. To use the variables and as the prognostic variables, one has to implement an inversion procedure to obtain the velocity field and the thermodynamic variables at each time step. Making use of the definition of and and projecting onto the vertical-mode space results in a modified Helmholtz equation for which is solved by spectral transform in longitude and fourth-order compact in latitude following the procedure introduced by Mohebalhojeh and Dritschel in 2007. Solving for the modified pressure can then be obtained either directly through the matrix relation or through projection onto vertical-mode space. The task is then to find the thermodynamic variables using the information available for at each column of fluid. The PV as a determining variable for vortical flows is given the highest priority in terms of accuracy. For this purpose, the Contour-Advective Semi-Lagrangian (CASL) algorithm, previously implemented for various settings and models including the many-layer Boussinesq primitive equation models on the sphere, provides the natural choice. An extension of CASL called DCASL has already been applied to the thermally-forced shallow water equations (SWEs) on the sphere. In generalized vertical coordinate, the evolution equation of is similar to that of PV in the thermally-forced SWEs. Therefore, the available DCASL can be generalized for the non-Boussinesq equations with little effort. The generalized vertical coordinate is set as with defined in such a way as to increase monotonically with geometrical height from zero at the surface to one at the top level. The functions and g are determined in such a way that (i) tends to and when pressure tends to its value at the surface and the top of the model, respectively, and (ii) the condition is satisfied to ensure monotonicity whenever and where and are prescribed values of the lowest value of potential temperature and the vertical gradient of potential temperature with respect to sigma, respectively. The time evolution of a two-layer baroclinically unstable midlatitude jet over a 30-day period is investigated as a test case to examine the performance of the algorithm developed. It should be mentioned that various experiments using different basic-state structures have been carried out. The experiment reported is however for the one with a uniform stratification obtained by setting a constant lapse rate of from to This choice of the basic-state structure leads to a flow regime with order one Rossby and Froude numbers. Results show the formation and development of an intense baroclinic wave with zonal wave number 3. Further, embedded in the baroclinic wave there are inertia-gravity waves generated by vortical flow in a manner resembling what has previously observed for the Boussinesq primitive-equation model. The successful integration of model in extreme flows gives us confidence to further develop the algorithm to a dynamical code for atmospheric general circulation models.
    Keywords: Atmospheric general circulation model, Generalized vertical coordinate, Vertical modes, PV, based model, Dynamical core, Unstable jet