فهرست مطالب

Iranian journal of chemical engineering
Volume:16 Issue: 1, Winter 2019

  • تاریخ انتشار: 1397/12/10
  • تعداد عناوین: 7
|
  • A. Mohammadi, J. Moghaddas * Pages 1-21
    In this study, nanoporous silica aerogel and silica aerogel-activated carbon composites have been synthesized using a water glass precursor by cost effective ambient pressure drying method. Equilibrium and kinetics of benzene and ethyl benzene adsorption on silica aerogel and its composites have been measured in a batch mode at tree weights of adsorbent. For the first time, the experimental data have been fitted with intra-particle diffusion model for determining of diffusion coefficients. The saturation adsorption capacity of benzene and ethyl benzene vapours was 2033 mg.g-1 and 458 mg.g-1 respectively. The components uptake curves have been described by mathematical models of pseudo first order and pseudo second order models. It has been found that the pseudo first order model fits the experimental data better than the pseudo second order model. Also, the pseudo-second order model could be used for modeling of benzene adsorption over silica aerogel and silica aerogel-2% wt. activated carbon composite at the beginning of adsorption process. The diffusion coefficients of benzene and ethyl benzene within the silica aerogel were in the range of 〖2.16×10〗^(-14) - 〖6.66×10〗^(-13) m2.s-1 and 〖3.65×10〗^(-13) - 〖1.95×10〗^(-12) m2.s-1, respectively.
    Keywords: Adsorption Kinetic, Diffusion coefficient, Equilibrium adsorption capacity, First order, second order model, Silica Aerogel
  • S. M. Mirfendereski * Pages 22-38
    Abstract In this work hydrothermal synthesis of zeolite NaA crystals with a composition of Al2O3:aSiO2:bNa2O:cH2O was investigated. Effects of SiO2/Al2O3, Na2O/Al2O3 and H2O/Al2O3 ratios and crystallization temperature and time were studied on crystallinity and crystal size of zeolite NaA crystals. It was tried to understand the interactions between these parameters. The crystal species of zeolite NaA were characterized by XRD and SEM. Considering the interactions between these parameters showed that effects of increasing SiO2/Al2O3 and Na2O/Al2O3 ratios simultaneously neutralize each other so that their overall effect is not significant. On the other hand, the effects of increasing SiO2/Al2O3 and H2O/Al2O3 ratios reinforce each other and significantly affect crystallinity and crystal size. Increasing alkalinity increases crystallization rate and reduces synthesis time. Also, effects of increasing crystallization temperature and time simultaneously reinforce the effects of each other. The effect of decreasing alkalinity is moderated with that of increasing Na+ content in the synthesis gel.
    Keywords: Zeolite NaA, Gel composition, Crystallization conditions, Crystallinity, Crystal size
  • A. Arinkoola *, T. Salawudeen, K. Salam, M. Jimoh, Z. Atitebi, G. Abidemi Pages 39-53
    Research has shown that many Bentonite in Nigeria are unsuitable for oil well drilling in their natural states. Their modification and blends with some additives could increase the yield and boost their suitability. Many indigenous polymers have become very popular due to environmental friendliness and their ability to modify rheology of clay suspension. However, the common natural polymers are characterized with excessive fluid loss, low gel strength at typical reservoir conditions. The aim of this study is therefore to examine the influence of selected polymers on the physicochemical and rheological properties of Nigerian clay-water suspension. Mud samples were prepared with polymers according to mud formulations currently used in the wells drilling with properties varied and optimized in a Reduced Central Composite Design (RCCD). The physico-chemical (pH, mud weight), rheological (plastic viscosity, yield point) and fluid loss were measured out on the studied muds. The results show that, the rheological characteristics of studied muds (PV (19.4 ± 1.50 cp) and Yp (21.5 ± 0.79 lbf/100ft2), the Fluid loss (10.12 ± 0.45 ml/30 minutes/100 psi) and 10 min and sec Gel value (4.6 ± 0.05 and 5.1 ± 0.01 lb/100ft2) were clearly improved. However, the mud weight values recorded (8.6 – 8.9 lb) though satisfied the minimum 8.6 lb/gal ceiling value but was due to the local barite that this study evaluated. The barite is characterized with low specific gravity and we recommend its modification prior to use to avoid high sand content.
    Keywords: Clay modification, Natural biopolymers, Reduced CCD, Numerical optimization, Rheology
  • M. Khajeh Amiri, A. Ghaemi *, H. Arjomandi Pages 54-69
    In this work, zeolite 13X with porosity structure has been used as an adsorbent for adsorption of CO2 flue gas. The effect of operating conditions including pressure and time on adsorption capacity were investigated. The experiments conditions are constant temperature, the range of pressure 1 - 9 bar and the registration of adsorption capacity with passing of time. Experimental data were adjusted with adsorption isotherm models including two and three parameters isotherm. Also the process was studied in terms of kinetic models and after the implementation of the experimental data with kinetic models, the speed of this process equations were obtained. The best kinetic model for this process was selected first order equation. The results showed that adsorption capacity of 13X is 71.5 mg/g at pressure of 8 bars. Also the result indicate that 13x has high capacity at low pressures. With regard to achieved results for adsorption isotherm modeling, the adsorption isotherm followed of the three-parameter and among three-parameter models, Toth isotherm can be interpreted the process. Also the results of the fixed bed indicate a very high adsorbent selectivity to carbon dioxide adsorption and there was little oxygen and nitrogen adsorption.
    Keywords: Adsorption, Carbon dioxide, Zeolite 13X, Isotherm, Kinetic, Modeling
  • A. Hemmati *, T. Abedzadegan Pages 70-82
    Different methods of urban sewage sludge energy recovery such as burning, gasification, pyrolysis and digestion based on the net energy production efficiency, advantages and disadvantages and complexity of these processes have been investigated in this article. The best method for energy production from sludge was selected among different methods according to energy and the amount of the greenhouse gas production. The capacity of the constructed power plant was calculated and investigated economically for each scenario. Quantitative and qualitative information on sludge was required to carry out this research so Ekbatan wastewater treatment sludge was analyzed. The results showed that the sludge of this treatment plant has 5.7% solids, containing 65.7% volatiles and the dry heat value is about 15100 kJ/kg. It was found that the best scenario for sludge energy production in this treatment plant is a digestion process with pure net energy production of 73.2 × 107 kJ/d. The energy recovery in an anaerobic digester can prevent the emission of 16,680 tons of CO2 annually and release about 1,460 tons of CO2 per year. The chemical analysis shows that the selected sludge has a potential production of 25m3 of CH4 for each m3 of sludge. The annual amount of biogas that can be recovered from municipal treatment plant is 836543 m3. On the other hand, the biogas can be used to generate electricity. The power of the plant is about 216.8 kW that with the construction of this power plant, an annual saving of 1.5 million dollars will occur.
    Keywords: Pyrolysis, gasification, Combustion, Digestion, Sludge, Energy recovery
  • A. Yousefi, K. Movagharnejad * Pages 83-100
    Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificial neural networks including multilayer perceptron, radial basis function and support vector machine were constructed to predict the solubility of these different pharmaceutical compounds in water and different solvents. Molecular weight, melting point, temperature and the number of each functional group in the pharmaceutical compound and organic solvents were selected as the input variables of these three different neural network models. The neural network predictions were compared with the experimental data and the SVR-PSO model with the Average Absolute Relative Deviation equal to 0.0166 for the solubility in water and 0.0707 for solubility in organic compounds was selected as the most accurate model.
    Keywords: organic compound, Solubility, Artificial Neural Network, Group Contribution, Support Vector Machine
  • M. Bahoosh, E. Kashi *, S. Shokrollahzadeh, Kh. Rostami Pages 101-116
    Reverse osmosis is a commonly used process in water desalination. Due to the scarcity of freshwater resources and wastewater problems, a lot of theory and experimental studies have been conducted to optimize this process. In the present study, the performance of reverse osmosis membrane module of salt–water separation was simulated based on computational fluid dynamics technique and solution-diffusion theory. Eight geometries of membrane modules four flat sheets, and four tubular membranes were investigated. It was found that if the membrane surface area and inlet flow rate were kept constant for the eight modules, the pressure drop and permeated flow rate would be approximately similar for some geometries (such as the performance of primary flat sheet channel is same as 3 tubular membranes with R=1/3 Rref). The results also showed that because of the phenomenon of concentration polarization, if it is possible to use more membranes with a smaller length, it can reduce the pressure drop and increase the permeation flux of water. Furthermore, the results showed that in similar conditions between the tubular and the plate membranes; the tubular one is more suitable for the water permeation due to its ease of construction and its ability to withstand ECP.
    Keywords: CFD modeling, Desalination, Pressure-driven membrane, Reverse Osmosis, Solution-Diffusion