فهرست مطالب

Research in Pharmaceutical Sciences - Volume:10 Issue: 5, Oct 2015

Research in Pharmaceutical Sciences
Volume:10 Issue: 5, Oct 2015

  • تاریخ انتشار: 1394/08/24
  • تعداد عناوین: 10
|
  • H. Hamishehkar, S. Same, Kh Adibkia, K. Zarza, J. Shokri, M. Taghaee, M. Kouhsoltani Pages 378-387
    The water content of the epidermis is a main factor in maintaining skin smoothness and elasticity and preventing skin dryness. Occlusive products can greatly affect skin hydration by forming a barrier on the skin following the topical administration of oil-based formulations. These products repair the skin barrier by restoring the skin lipids as well. Solid lipid nanoparticles (SLNs) have recently been introduced as a novel carrier with several benefits in pharmaceutics and cosmeceutics. It has been suggested that SLNs may have an occlusive effect following topical application. In this study, the occlusion effects of lipidic particles in different size ranges were investigated in vitro, ex vivo, and in vivo, and the results were compared with the positive (vaseline) and negative (blank) controls. Although larger lipidic particles showed better occlusion properties than nanoparticles in vitro, but ex vivo experiments confirmed the benefits of nanoparticles (almost 30% higher occlusion factor for particles in the range of 170 nm than ones in the range of 600 and 1800 nm). The superiority of SLN formulation to Vaseline as a positive reference was confirmed by the in vivo study. SLN formulation resulted in much thicker stratum corneum than Vaseline. It was indicated that in vitro and ex vivo study methods may not be a good reflective of the in vivo method for determining the occlusive properties of nanoparticulate systems. It was concluded that formulations containing SLNs can be used as efficient skin moisturizer products.
    Keywords: Solid lipid nanoparticles, Topical occlusive, Cosmeceutics, Skin moisturizer
  • Kj Patel, Ak Panchasara, Mj Barvaliy, Bm Purohit, Sn Baxi, Vk Vadgama, Cb Tripathi Pages 388-396
    In the present study,cardioprotective effect of aqueous extract of Garcinia indica Linn. fruit rinds in isoprenaline-induced myocardial infarction in Wistar albino rats was evaluated. In vitro total phenolic, total flavonoid content and 2, 2’-diphenyl-1-picrylhydrazyl hydrate radical scavenging activity was measured. In vivo effect of aqueous extract of G. indica was evaluated in Wistar albino rats by isoprenaline-induced myocardial injury model. Thirty six rats were randomly divided in 6 groups. Rats were treated with G. indica 250 mg/kg and 500 mg/kg doses for 21 days and myocardial injury was produced by subcutaneous injection of isoprenaline 85 mg/kg on day 20 and 21. Carvedilol 1 mg/kg for 21 days served as active control. Electrocardiogram parameters, cardiac injury markers (serum troponin-I, uric acid, lactate dehydrogenase, creatinine kinase-MB, aspartate aminotransferase and alanine aminotransferase), oxidative stress markers (superoxide dismutase, catalase and malondialdehyde level) and histopathological changes were evaluated in each group and compared using appropriate statistical tests. In vitro evaluation of aqueous extract showed significant antioxidant property. Isoprenaline produced significant myocardial ischemia as compared to normal control group (P<0.05). Administration of G. indica in both the doses did not significantly recover the altered electrocardiogram, cardiac injury markers, oxidative stress markers and histopathological myocardial damage as compared to disease control group (P>0.05). The aqueous extract of G. indica was not found to be cardioprotective against myocardial injury. Further study with more sample size and higher dose range may be required to evaluate its cardioprotective effect.
    Keywords: Carvedilol, Cardioprotective, Garcinia indica, Isoprenaline, Myocardial infarction
  • S. Zaeri, Sh Farjadian, M. Emamghoreishi Pages 397-406
    Lithium and valproate modulate disturbances in intracellular calcium homeostasis implicated in the pathophysiology of bipolar disorder, but the molecular mechanisms are not fully understood. Two subtypes of transient receptor potential (TRP) channel family, i.e. TRPC3 and TRPM2, are potential candidates involved in calcium signaling and implicated in the pathophysiology of bipolar disorder. This study was designed to investigate whether mood stabilizers such as lithium and valproate affect the expression of TRPC3 and TRPM2. Rats were treated with intraperitoneal injections of lithium (2 mEq/kg b.i.d.) or valproate (300 mg/kg b.i.d.) acutely (for 24 h) or chronically (for 4 weeks). The changes in mRNA and protein levels of TRPC3 and TRPM2 were measured with real-time polymerase chain reaction and western blotting. The chronic administration of lithium and valproate significantly reduced levels of TRPC3 by 19.7% and 19.3%, respectively. No change was detected in the mRNA level of this channel. Neither acute nor chronic treatment with lithium or valproate had any effect on TRPM2 levels. The results suggest that downregulation of the TRPC3 channel is an important shared mechanism by which lithium and valproate can modulate calcium disturbances, whereas the TRPM2 channel does not appear to be affected by mood stabilizers, at least under non stressed conditions.
    Keywords: TRPC3, TRPM2, Lithium, Valproate, Bipolar disorder, Cerebral cortex
  • A. Mohammadi, Farani, A. Haghighi, M. Ghazvineh Pages 407-418
    There are many discrepancies around the effect of sex hormones on spatial learning and memory in rodents. The aim of the present study was to investigate the effects of chronic administration of estradiol (ES) and testosterone (TES) on spatial memory in adult castrated male rats. Cholinesterase activity of the hippocampus in treated animals was also measured to seek if hormonal treatment can change the acetylcholinesterase (AChE) activity in this region. Six groups of castrated male rats received different doses of ES valerate (1, 4, 10 mg/kg, by subcutaneous, sc) and TES enanthate (10, 20, 40 mg/kg, sc) in weekly injection intervals for 6 weeks. Morris water maze (MWM) was used to assess the spatial reference memory of the rats. The specific activity of AChE in the hippocampus was also measured. The treatment duration and the dose quantity of ES had significant (P<0.001 and P=0.048, respectively) effect on the learning ability in the rats. For TES treated rats, treatment duration showed a significant effect (P<0.001) on learning performance of the rats. The activity of AChE compared to the control group was significantly increased in ES treated rats in a dose dependent manner and it was decreased in the group that received the highest dose of TES. Our results showed that chronic high dose of ES decreased the learning ability of male castrated rats in a reference memory version of MWM test. This can be explained by the decreased AChE activity in the hippocampus.
    Keywords: Spatial reference memory, Testosterone, Estradiol, Acetylcholinesterase, Morris water maze, Hippocampus
  • N. Tavakoli, M. Minaiyan, M. Heshmatipour, R. Musavinasab Pages 419-428
    Celecoxib is used in the treatment of osteoarthritis, rheumatoid arthritis, acute pain, joint inflammation and sport injuries. Long term administration of the drug results in such complications as gastrointestinaland renal disturbances and cardio-vascular complications. The main objective of the present study was to investigate the feasibility of delivering celecoxib incorporated in gel formulations by iontophoresis. Sodium alginate, sodium carboxymethyl cellulose, hydroxypropyl methylcellulose (HPMC) and carbopol 934P were used to develop topical gel formulations of celecoxib. The gel formulations were evaluated for macroscopic and microscopic properties, pH determination, spreadability, rheological behaviour, and drug release characteristics both in vitro and ex vivo. Drug release was evaluated in the presence of iontophoresis field (0.1 to 0.5 mA/cm2) or without electrical current (passive diffusion) and celecoxib was measured spectrophotometrically at 252 nm. Most gel formulations showed acceptable physicochemical properties. Amongst formulations, gel formulation containing HPMC K4M which indicated greater performance in drug release behaviour was selected for further in vivo studies. The cumulative percent of drug released in vitro at the end of each experiment was 36%, 63%, and 89.7% for passive diffusion, direct electric current (DC) current density of 0.3 mA/cm2, and 0.5 mA/cm2, respectively. The findings of ex vivo drug transport across rat skin also showed a significantly higher release of celecoxib compared to passive flux for both AC and DC currents. A 0.5 mA/cm2 of DC current increased drug flux to 73% compared to 41.5% of passive diffusion. It can be concluded from the results of this study that the application of iontophoresis enhances the flux of celecoxib, as compared to the passive diffusion.
    Keywords: Iontophoresis, Celecoxib, Gel formulation, NSAIDs, In vitro, Ex vivo, Rat skin
  • Mh Asghari, R. Hobbenaghi, A. Nazarizadeh, P. Mikaili Pages 429-435
    Pulmonary fibrosis is a progressive disease of the lungs, which leads to death in human. It has been suggested that transforming growth factor beta 1 (TGF-β1) together with oxidative stress play a central role in the pathogenesis of the ailment. The objective of this study was to evaluate the possible curative effects of black radish, Raphanus sativus L. var niger (RSN) on bleomycine (BLM) -induced pulmonary fibrosis in a rat model. In this study, thirty-six male Wistar rats were divided into six groups, including: (I) positive (BLM) control group, (II) negative (normal saline) control group, (III) sham group (R. sativus extract 150 mg/kg), and (IV-VI) treatment groups. In order to induce pulmonary fibrosis, four groups were treated with a single dose of BLM sulfate (7.5 U/kg) through intratracheal instillation. Treatment groups (IV-VI) received RSN extract (75, 150, and 300 mg/kg) orally a week before and two weeks after the administration of BLM. At the end of the treatment course, blood and lung tissue samples were taken and the measurement of TGF-β1 and histopathological examination of the lung tissues performed. The results showed that RSN, at 300 mg/kg dose, could significantly decrease the serum level of TGF-β1 and severity of the histological lesions as compared to the positive control group. The results of the current study indicate that the components present in the extract can remarkably prevent the aggravation of pulmonary fibrosis via decreasing TGF-β1 level.
    Keywords: Pulmonary fibrosis, Bleomycin, Raphanus sativus L. var niger, TGF, β1
  • M. Golshani, S. Rafati, A. Jahanian, Najafabadi, M. Nejati, Moheimani, Sd Siadat, F. Shahcheraghi, S. Bouzari Pages 436-445
    Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and TOmp31-L7/L12 were subjected to in silico modeling and analysis. Analysis and validation of the fusion proteins with three dimensional (3D) models showed that both models are in the range of native proteins. However, L7/L12-Tomp31 structure was more valid than the TOmp31 L7/L12 model and subjected to in vitro production. The major histocompatibility complex (MHC II) epitope mapping using IEDB database indicated that the model contained good MHC II binders. The L7/L12-TOmp31 coding sequence was cloned in pET28a vector. The integrity of the construct was confirmed by polymerase chain reaction, restriction enzyme mapping, and sequencing. The fusion was successfully expressed in E. coli BL21 (DE3) by induction with isopropyl β-D-thiogalactopyranoside. The rL7/L12-TOmp31 was purified with Ni-NTA column. The yield of the purified rL7/L12-TOmp31 was estimated by Bradford method and found to be 40 mg/L of the culture. Western blotting with anti-His antibody revealed a specific reactivity with purified rL7/L12-TOmp31 produced in E. coli and showed the functional expression in the prokaryotic system. In this study, a new protein vaccine candidate against brucellosis was constructed with the help of bioinformatics tools and the construct was expressed in the bacterial host. Studies evaluating the immunogenicity and cross-protection of this fusion protein against B. melitensis and B. abortus are underway.
    Keywords: Brucella, Omp31, L7, L12, Fusion protein, Cloning, In silico design
  • H. Sadraei, Gh Asghari, F. Kasiri Pages 446-452
    Dracocephalum kotschyi Boiss. (Labiatae) is a traditional medicine which is believed to have antispasmodic and analgesic activities. The antispasmodic action of D. kotschyi essential oil has been shown in a previous report. The objective of this research was to study antispasmodic activity of hydroalcoholic extract of D. kotschyi on ileum contractions. Hydroalcoholic extract was obtained from aerial part of D. kotschyi using percolation method. For antispasmodic studies, a portion of rat ileum was suspended under 1g tension in Tyrode’s solution at 37 °C and gassed with O2. Effect of the D. kotschyi extract was assessed on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The D. kotschyi extract concentration dependently inhibited the response to KCl (IC50=36 ± 5.1 mg/ml), ACh (IC50=101 ± 9.5 mg/ml), EFS-1 (IC50=96 ± 7.1 mg/ml) and EFS-2 (IC50=53 ± 4.3 mg/ml). From this experiment it was concluded that D. kotschyi extract possessed potent antispasmodic activity. Therefore, identification of the active component(s) is (are) recommended in order to find the best lead compound for drug development.
    Keywords: Dracocephalum kotschyi, Extract, Antispasmodic, Ileum
  • M. Asghari, Mr Naghavi, Ah Hosseinzadeh, M. Ranjbar, M. Poorebrahim Pages 453-459
    Malaria is currently one of the most important causes of mortality in developing countries. High resistance to available antimalarial drugs has been reported frequently, thus it is crucial to focus on the discovery of new antimalarial drugs. Artemisinin, an effective antimalarial medication, is isolated from various Artemisia species. To identify the Artemisia species producing high quantity of artemisinin, eight species of Artemisia were screened with the genetic sequence characterized amplified region (SCAR) marker for higher quantity of artemisinin. The DNA band corresponding to SCAR marker was cloned into pGEM®-T Easy vector and sequenced. The content of artemisinin in tested species was also measured using high-performance liquid chromatography (HPLC) assay. The primers designed for high-artemisinin SCAR marker could amplify a specific band of approximately 1000 bp which was present in two Artemisia annua and Artemisia absinthium species. These SCAR marker sequences for two selected species were submitted into the GenBank databases under KC337116 and KC465952 accession numbers. HPLC analysis indicated that two selected Artemisia species, genetically recognized as high-artemisinin yielding plants, had higher artemisinin content in comparison to other examined species. Therefore, in this study, we propose developed SCAR marker as a complementary tool for confidently detection of high-artemisinin content in Artemisia species.
    Keywords: Artemisia absinthium, Artemisia annua, Artemisinin, SCAR markers
  • Aa Azadbakht, M. Radahmadi, Sh Haghjooye Javanmard, P. Reisi Pages 460-465
    Stress has a profound impact on the nervous system and causes cognitive problems that are partly related to the inflammatory effects. Besides influencing the content of neurotransmitters, antidepressants such as doxepin are likely to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, the present study investigated the effects of doxepin on passive avoidance learning and the levels of tumor necrosis factor-alpha (TNF-α) in the rat hippocampus following repeated restraint stress. Male Wistar rats were divided into five groups. Chronic stress was induced by keeping animals within an adjustable restraint chamber for 6 h every day for 21 successive days. In stress-doxepin group, stressed rats were given 1, 5 and 10 mg/kg of doxepin intraperitoneally (i.p) for 21 days and before placing them in restraint chamber. Healthy animals who served as control group and stressed rats received normal saline i.p. For evaluation of learning and memory, initial latency and step-through latency were determined using passive avoidance learning test. TNF-α levels were measured in hippocampus by enzyme-linked immunosorbant assay (ELISA) at the end of experiment. Induced stress considerably decreased the step through latencies in the rats (P<0.05) but doxepin administration prevented these changes. Stress-doxepin groups did not reveal any differences compared to control group at any given doses. TNF-α level was increased significantly (P<0.05) in stress group. Only the low dose of doxepin (1 mg/kg) decreased TNF-α level. The present findings indicated that learning and memory are impaired in stressful conditions and doxepin prevented memory deficit. It seems that inflammation may involve in induced stress memory deficits, and that doxepin is helpful in alleviating the neural complications due to stress.
    Keywords: Doxepin, Stress, Learning, memory, TNF, α