فهرست مطالب

Nanomedicine Journal - Volume:6 Issue: 1, Winter 2019

Nanomedicine Journal
Volume:6 Issue: 1, Winter 2019

  • تاریخ انتشار: 1397/10/19
  • تعداد عناوین: 9
|
  • Piyachat Evelyn Roopngam * Pages 1-10
    Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendritic cells (DCs) both in vitro and in vivo. Using nanoparticles to target DCs is an effective method to deliver antigens and potent immunomodulators. Uptake of NPs by DCs enhances the intracellular process of antigens and the antigen presentation pathway by MHC class I and II molecules to induce both CD4+ and CD8+ T-cell responses. Liposome and polymer-based NPs are now extensively applied as effective adjuvants or immunomodulators in several types of vaccines. In this review, the nanomaterials for vaccine application are focused intensively in poly(lactic-co-glycolic) acid (PLGA), dendrimers, liposomes, nanogels and micelles which are the targeted antigen delivery system, and present high potential as a promising future strategy for DNA-based, bacterial and viral vaccines. Further advances in nanotechnology and molecular immunology techniques will enhance the success of targeting and lead to the next generation of nano-delivery systems.
    Keywords: Adjuvants, Dendritic cells, Liposome, Nanoparticles
  • Soodeh Tahmasbi, Fatemeh Mohamadian *, Sehre Hosseini, Leila Eftekhar Pages 11-18
    Objective (s): Nanotechnology has gained importance in recent years due to its ability in the enhancement of materials properties and other specifications such as antimicrobial properties. Nano-sized materials have been applied in various fields of dentistry. Nanotechnology can be employed in orthodontics to enhance the quality of treatment. In the current study, a comprehensive review is carried out on the applications of nanotechnology in orthodontics.
    Materials and Methods
    In the first step, various databases such as Scopus, Google Scholar and Pubmed were searched by using appropriate keywords for the present study. Afterwards, the related resources were selected to be reviewed. Finally, the key findings of the reviewed studies were represented and summarized.
    Results
    Based on the reviewed researches, nanotechnology is applicable in various aspects of orthodontics. By using nanotechnology, improved properties in mechanical and medical specifications are achievable. For instance, by using nano coating in archwires, the friction force between components can be reduced and facilitate its motion. In addition, adding some types of nano particles to the composites resulted in improvement in tensile and shear bond strength. Antimicrobial properties of specific nano particles such as silver makes them favorable for reducing microorganisms in orthodontics treatment. Moreover, nanotechnology can be used in nano-identation test to assess the tools employed in orthodontics.
    Conclusion
    nanotechnology can be broadly employed in orthodontics to achieve better treatment including improved strength of utilized materials, more accurate positioning and reduced microorganisms.
    Keywords: adhesives, Archwires, Nanorobots, Nanotechnolog, Orthodontics
  • Ayatollah El_Shorbagy _Irene S Gamil_Mohammed A Mohey_Soad Nady * Pages 19-26
    Objective(s)
    Schistosomiasis and hepatitis C virus [HCV] co-infection is common among the Egyptian population. Co-infected patients have higher rate of chronic hepatitis, cirrhosis and hepatocellular carcinoma. The aim of the present study was to investigate the potential role of gold nanoparticles on granuloma in vitro.
    Materials and Methods
    In the current study, granulocytes were isolated from the blood of 50 Schistosoma/HCV co-infected patients and 25 healthy subjects. Granulocytes were used to induce granuloma in vitro in the presence of polyacrylamide beads coated with Schistosoma mansoni soluble egg antigen and interleukin-17. In addition, granuloma was treated on the 3rd day with gold nanoparticles alone or in the presence of human hepatocellular carcinoma cell line (Hep G2) as carcinoma model. Praziquantel (PZQ) was used as a positive control. Granuloma index was determined on the 7th and 14th day. Furthermore, the supernatants were collected to measure the granulocyte mediators including tumor necrosis factor alpha [TNF-α], hydrogen peroxide [H2O2] and nitric oxide [NO] by ELISA on the 7th and 14th day.
    Results
    Treatment with AuNPs in the presence of Hep G2 showed a significant reduction in granuloma index and granulocyte mediators including H2O2 and NO, while a significant elevation was observed in TNF-α level as compared to their corresponding values in the presence of IL-17 in both healthy individual and co-infected patients on the 7th and 14th day.
    Conclusion
    In conclusion, the presence of IL-17 accelerated the formation of granuloma and the treatment with AuNPs in the presence Hep G2 cells indicated that AuNPs were more effective antioxidant agents than PZQ.
    Keywords: Interleukin 17, Gold Nanoparticles, Schistosoma, Hepatitis
  • Mohsen Rahimi , Asgar Emamgholi *, Seyyed Javad Seyyed Tabaei , Mahdi Khodadoust , Hojat Taghipour , Ameneh Jafari Pages 27-34
    Objective (s): Several methods have been proposed for repairing defects and damages, one of which is cell therapy. Bone marrow stromal cells seem to be suitable for this purpose. On the other hand, many biometric materials are used to improve and correct the defects in the body. Nanofibers are widely used in the medical industry, especially in tissue engineering, as scaffolds in wound healing and wound dressing. Chitosan/polyethylene oxide nanofibers can be a suitable replacement for routine wound coverages. Hence, this study was conducted to present a combination of these methods.
    Materials and Methods
    Chitosan/polyethylene oxide nanofibers and thin films of chitosan were produced and optimized by electron microscopy, on which the bone marrow stromal cells were then cultivated. Interactions between the cells and these biomaterials were investigated through viability, morphology, immunocytochemistry and electron microscopy of cells after 6 days.
    All data were analyzed using Student’s t-test and one-way ANOVA tests in SPSS version 16.
    Results
    It seems that the high viscosity of chitosan prevents the formation of nanofibers, while chitosan/polyethylene oxide solutions with 80/20 and 90/10 ratios produce perfect, regular, bead free and non-toxic nanofibers with average diameter of 240±10 and 220±10 nm, respectively.
    The results of immunocytochemistry and viability showed that the cells had relatively high proliferation on the thin chitosan membranes, while the results of the electron microscopy showed that the morphology of cells was better on the nanofibers than on the thin membrane of chitosan.
    Conclusion
    Since bone marrow stromal cells were grown well on chitosan-nanofibers, each of them alone was used in the therapeutic methods. It is better to consider a combination of two methods as the treatment method, especially in tissue engineering and cell therapy.
    Keywords: Biocompatible materials, Cell-, Tissue-based therapy, Nanocomposites, Nanostructures, Tissue regeneration
  • Ali Taghizadehghalehjoughi , Ahmet Hacimuftuoglu *, Meltem Cetin, Afifie busra ugur , Selcuk butuner, Numan Taspinar, Maryam mohammadzadeh Pages 35-42
    Objective(s)
    The present study was designed to evaluate of Metformin/Irinotecan-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) effects on glutamate re-uptake time and receptor expression status in both glioblastoma multiforme (GBM) and cortex neuron cultures. The study was performed on glioblastoma cell line and primer cortex neuron.
    Materials and Methods
    The re-uptake time and gene expression status of pure drugs and MET- or IRI-loaded-PLGA NPs on healthy neuron cells and U-87 MG cell line were investigated by using glutamate specific voltammetry electrodes technique and real time PCR.
    Results
    Both MET and MET-PLGA NPs (1 and 2 mM) exhibited significant cytotoxicity on both U87MG and neuron cells. MET and MET-PLGA NPs (0.5 mM) showed lower cytotoxic effects on both cells. IRI and IRI-PLGA NPs (100 µM) had significant cytotoxic effects on both cell lines.
    Conclusion
    All drug-loaded NPs caused a significant reduction in glutamate reuptake time compared with free drugs, blank NPs and cancer cells control groups. Consequently, MET- and IRI-loaded PLGA NPs may be a promising approach to treat GBM.
    Keywords: EAAT1, Irinotecan, Metformin, PLGA, Voltammetry
  • Reza Sadeghi, Abolfazl Razzaghdoust *, Mohsen Bakhshandeh , Farinaz Nasirinezhad, Bahram Mofid Pages 43-49
    Objective(s)
    Curcumin, a natural plant product, is commonly known as wonder drug of life, but the poor bioavailability of its free form has hindered its clinical development. The aim of the present study was to investigate the radioprotective effect of nanocurcumin on survival of mice under whole body X-ray irradiation.
    Materials and Methods
    The Naval Medical Research Institute (NMRI) mice randomly assigned to separate groups and received nanocurcumin via oral gavage at different time points related to irradiation. The survival of mice was evaluated daily for 30 days post-irradiation and finally, the LD50/30 was calculated using Probit analysis. The 30-day survival curve was plotted using the Kaplan-Meier survival curve and the median survival of different subgroups was compared using log-rank test. The P-values less than 0.05 were considered significant.
    Results
    Our results showed that the administration of oral nanocurcumin could effectively reduce the mortality rate in the irradiated mice. Five days pretreatment with nanocurcumin (4 mg/kg/day) induced maximum radioprotective effect. The LD50/30 was 7.18 Gray (Gy) (95% confidence interval [CI]: 6.59-7.77) and 8.78 Gy (95% CI: 8.14-9.50) for irradiation-only and the optimum nanocurcumin group (pre-irradiation group), respectively (dose reduction factor [DRF] = 1.22). Continued administration of nanocurcumin up to seven days post-irradiation resulted in no further radioprotection.
    Conclusions
    The results obtained in this study confirmed the efficacy of nanocurcumin as a radioprotective agent against radiation-induced mortality in mice. The specific characteristics of nanocurcumin, such as non-toxicity, edibility, availability, make this phytochemical as a potential radioprotective agent in the radiotherapy setting and radiation accidents. Further clinical studies are highly recommended.
    Keywords: Herbal radioprotector, Mice survival, Nanocurcumin, Whole-body Irradiation
  • sorour sadeghzade *, rahmatollah Emadi Pages 50-54
    Objective(s)
    Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthesized to be used in tissue engineering applications.
    Materials and Methods
    The spongy part of bovine bone was cut and the subsequent sintering temperature was applied for fabrication of natural hydroxyapatite. Then the scaffolds were coated with 30 wt% nano-Diopside/Forstrite composite slurry. The scaffolds were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscope (EDS).
    Results
    In the present study, the mechanical properties of natural HA scaffold were improved when coated with a composite nmaed Diopside/Forstrite ceramic. The optimum properties were evaluated for the scaffolds containing 30 wt% composite ceramic coating. The pore size of the obtained scaffold was measured to be in the range of 300-400 nm. Compressive strength and porosity of the composite scaffold were approximately 1.5±0.2 MPa and 93±1.1 MPa, respectively.
    Conclusions
    Based on the mechanical and bioactivity result, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating showed improved mechanical properties, pore size, porosity content and apatite formation ability whcih can be a promising candidate for bone tissue engineering applications.
    Keywords: Porous materials, Hydroxyapatite, Coating, Forstrite, Diopside
  • Parvin Najafi, Hasan Kouchakzadeh * Pages 55-66
    Objective(s)
    Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were prepared and the process was optimized using the response surface methodology (RSM) to achieve optimum loading of IONPs in albumin nanoparticles.
    Materials and Methods
    IONPs were incorporated into bovine serum albumin nanoparticles (BSA NPs) matrix, to yield IONPs-BSA NPs. The resulting nanoparticles were characterized physicochemically by scanning electron microscopy (SEM), dynamic light scattering (DLS), inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The stability test was conducted over 6 months.
    Results
    Under optimum conditions of 2.28 mg for iron weight and pH 9.21, loading of 7.76% was obtained for the spherical IONPs-BSA NPs with the size of 177±12 nm, PDI of 0.222±0.07 and zeta-potential of -36.4±2.3 mV. These findings revealed that more than 90% and 60% of the particles retained their size over four and six months of storage at 4 °C, respectively. In addition, non-cytotoxicity and hemocompatibility of IONPs-BSA NPs were verified in vitro thereby offering them as a biocompatible contrast agent for cancer diagnosis.
    Conclusion
    The IONPs-BSA NPs developed in this study are promising to be further investigated and functionalized with a ligand to obtain a targetable MRI contrast agent for early cancer diagnosis.
    Keywords: Bovine serum albumin nanoparticles, Iron oxide nanoparticles, Optimum production, Response surface methodology (RSM)
  • Hossein Khosravi, Karim Ghazikhanlousani, Azizollah Rahimi * Pages 67-74
    Objective(s)
    Normoxic MAGIC-f polymer gels are established dosimeters used for three dimensional dose quantifications in radiotherapy. Nanoparticles with high atomic number such as gold are novel radiosensitizers used to enhance doses delivered to tumors. The aim of this study was to investigate the effect of gold nanoparticles (GNPs) in enhancing percentage depth doses (PDDs) within the MAGIC-f gel exposed to linear accelerator (linac) high energy photon beams.
    Materials and Methods
    The MAGIC-f gel was fabricated based on its standard composition with some modifications. The PDDs in tubes containing the gel were calculated by using a common Monte Carlo code (Geant4) followed by experimental verifications. Then, GNPs with an average diameter of 15 nm and a concentration of 0.1 mM were embedded in the gel, poured into falcon tubes and irradiated with 18 MeV beams of an Elekta linac. Finally, similar experimental and Monte Carlo (MC) calculations were made to determine the effect of using GNPs on some dosimetric parameters of interest.
    Results
    The results of experimental measurements and simulated MC calculations showed a dose enhancement factor (DEF) of 1.12±0.08 and 1.13±0.04, respectively due to the use of GNPs when exposed to 18 MeV linac energies.
    Conclusion
    The results indicated that the fabricated MAGIC-f gel could be recommended as a suitable tool for three dimensional dosimetric investigations at high energy radiotherapy procedures wherein GNPs are used.
    Keywords: Radiotherapy, Dose Enhancement Factor, GNPs, MAGIC-f gel, Monte Carlo Method