فهرست مطالب

Molecular Biology Research Communications - Volume:6 Issue: 2, Jun 2017

Molecular Biology Research Communications
Volume:6 Issue: 2, Jun 2017

  • تاریخ انتشار: 1396/03/31
  • تعداد عناوین: 6
|
  • Amin-Alah Tahmasebi, Alireza Afsharifar Pages 45-56
    Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency.N. benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens, increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana.
    Keywords: Cap analog, HC-Pro, N. benthamiana, Recombinant protein
  • Malihe Shariatikia, Mandana Behbahani, Hassan Mohabatkar Pages 57-64
    The present investigation was carried out to evaluate anticancer activity of cow, goat, sheep, mare, donkey and camel milks and their casein and whey proteins against MCF7 cell line. The structure-based properties of the casein proteins were also investigated, using bioinformatics tools to find explanation for their antitumor activities. The effect of different milks and their casein and whey proteins on MCF7 proliferation was measured using MTT assay at different concentrations (0.5, 1 and 2 mg/ml). The results showed that mare, donkey, cow and camel milks and their casein and whey proteins have potent cytotoxic activity against MCF7 cells in a dose dependent manner while sheep and goat milks and their proteins did not reveal any cytotoxic activity. The in silico results demonstrated that mare, donkey and camel caseins had highest positive and negative charges. The secondary structure prediction indicated that mare and donkey caseins had the maximum percentage of α helix and camel casein had the highest percentage of extended strand. This study suggests that there is a striking correlation between anti-cancer activity of milk caseins and their physicochemical properties such as alpha helix structure and positive and negative charges. In conclusion, the results indicated that mare, camel and donkey milks might be good candidates against breast cancer cells.
    Keywords: Milks, Casein, Whey proteins, MTT assay, In silico study
  • Ida Azad, Abbas Alemzadeh Pages 65-75
    Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. Its cDNA length is 1900 bp with a 5'-untranslated region of 311 bp and 3'-untranslated region of 341 bp, of which 1248 bp from open reading frame encoding 415 amino acid residues with a molecular weight of 46 kDa and an isoelectric point 7.2. Also, an upstream open reading frame contains 100 aa was found at -12 position from ATG initiation codon. ZmSTPK1 with a long half-life, 10 hours in Escherichia coli, and instability index of 32.25 is classified as a stable protein. A calmodulin binding domain was found in ZmSTPK1 at position from 395 to 405 in C-terminal end. The helical wheel analysis showed that the stretch of residues Ile-395 to Asp-415 has the potential to form a charged amphiphilic a-helix characteristic of a calmodulin-binding region. Two P1BS-like motifs, which are present in the promoter regions of Pi starvation-induced genes, were located at positions -48 and -867 from ATG initiation codon. The expression of ZmSTPK1 responded to available phosphate, and its expression up-regulated under phosphate starvation.
    Keywords: Gene expression regulation, Phosphate starvation stress, Plant protein kinase, ZmSTPK1
  • Nida Sadiq, Bhat Javid, Masood Akbar, Shah Idrees, Wani Adil, Ganai Bashi Ahmad Pages 77-84
    Studies on associations of various polymorphisms in xenobiotic metabolizing genes with different cancers including acute lymphoblastic leukaemia (ALL) are mixed and inconclusive. The current study analyzed the relationship between polymorphisms of phase I xenobiotic metabolizing enzymes, cytochromes P450 1A1 (CYP1A1) and CYP2D6 and childhood ALL in Kashmir, India. We recruited 200 confirmed ALL cases, and an equal number of controls, matched for sex, age and district of residence to the respective case. Information was obtained on various lifestyle and environmental factors in face to face interviews with the parents/attendants of each subject. Genotypes of CYP1A1 and CYP2D6 were analyzed by polymerase chain reaction and restriction fragment length polymorphism method. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Compared to the GG genotype, we found a higher ALL risk in subjects who harbored variant (AA) genotype (OR=20.9; 95% CI: 6.01-73.1, P
    Keywords: Acute Lymphoblastic Leukaemia, Polymorphism, Kashmir, Xenobiotics
  • Iman Jamhiri, Iraj Saadat, Shahpour Omidvari Pages 85-90
    Oxidative stress is significant in numerous types of disease including cancer. To protect cells and organs against reactive oxygen species (ROS), the body has evolved an antioxidant protection system that involved in the detoxification of ROS. Single nucleotide polymorphisms (SNP) of anti-oxidative enzymes may dramatically change the activity of the encoded proteins; therefore, certain alleles can be established as risk factors for some kind of multi-factorial diseases including cancer. In present study we investigate the possible association between polymorphisms of superoxide dismutase 1 (SOD1, OMIM: 147450) and catalase (CAT, OMIM: 115500) genes and the risk of colorectal cancer (CRC). The study included 204 colorectal cancer patients and 239 healthy control group matched for gender and age. Genotyping of SOD1 A251G and CAT C-262T were done by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. There was no significant association between CAT C-262T polymorphism and susceptibility to CRC (P>0.05). The carries of the G allele of SOD1 significantly showed higher prevalence in CRC patients compared with the control group (OR=1.84, 95% CI=1.13-2.98, P=0.013). We assessed the effect of combination of genotypes of the study polymorphisms on the risk of CRC. We found that the combination of AG (SOD1) and CC (CAT) increases the risk of developing CRC (OR=2.38, 95% CI=1.25-4.52, P=0.008).
    Keywords: SOD1, Catalase, Colorectal cancer, Genetic polymorphism
  • Saeedeh Mousavi, Leila Kohan, Majid Yavarian, Asadollah Habib Pages 91-94
    Type 2 diabetes mellitus is a worldwide epidemic disorder with considerable health and economic consequences. Metformin is one of the most commonly prescribed oral antidiabetic drugs. Pharmacogenetic studies showed that variants in genes related to the pharmacokinetics of metformin were associated with glucose-lowering effect of metformin. The aim of this study was to evaluate pharmacogenetic variation in SLC47A1 (rs2289669) and metformin response in type 2 diabetes patients. Seventy one patients with type 2 diabetes were included in the study. The genotypes were determined by Tetra–ARMS–PCR method. There was a significant association between the study polymorphism and the response to metformin treatment with the highest HbA1C reduction in AG genotype. In the dominant model for A allele (AA vs GG), patients with A allele had highest HbA1C reduction in response to metformin.
    Keywords: Diabetes, Pharmacogenetics, SLC47A1, Polymorphism