فهرست مطالب

Pollution
Volume:5 Issue: 3, Summer 2019

  • تاریخ انتشار: 1398/04/10
  • تعداد عناوین: 17
|
  • F. Nezhadbahadori, M. A. Abdoli *, M. Baghdadi Pages 449-461
    Due to its wide range of hazardous hydrocarbons and even heavy metal ions, oily sludge has become a great environmental challenge which must be dealt with quite quickly. As a result, ther have been numerous efforts during recent years to develop an efficient method for sludge recovery. The current research studies the effectiveness of solvent extraction with toluene and Fe2O3 nanoparticles for recovery and upgrading of oily sludge. Having employed Design of Experiment (DOE), it has found optimum conditions for sludge recovery with solvent extraction, namely a temperature of 55°C and mixing time of 17 minutes with solvent to sludge ratio of 6.4/4.2. Under these conditions, the sludge recovery has been 37%, which is the maximum available with toluene. Furthermore, it has studied the effectiveness of Fe2O3 nanoparticles for improvement of sludge pyrolysis efficiency in order to upgrade the oily sludge, wherein it has been observed that nanoparticles can significantly decrease the temperature and time of reaching maximum conversion during sludge pyrolysis process. The temperature and time of reaching to the maximum conversion, by means of gamma Fe2O3 nanoparticles, is about 200°C and 1200 s, respectively, which is lower than the condition in which pure sludge is being pyrolyzed.
    Keywords: Oily sludge, recovery, upgrading, solvent extraction, iron nanoparticles
  • S. H. Jalali *, A. R. Vafaeinejad, H. Aghamohammadi, M. Esmaeili Bidhendi Pages 463-471
    The purpose of this study is to use both agent-based modeling as a new method in modeling dynamic phenomena and GIS to show the effects of carbon monoxide (CO) on individuals in the city of Tehran. After collecting the latest information about the severity of carbon monoxide pollutants on different days, one of the days with a very high severity of this pollutant has been selected for investigation and the interpolation map of its data has been developed via IDW method in ArcGIS software environment, which is then re-classified with the NetLogo software environment used to run the agent-based model. At this stage, the agents are randomly produced in four different age groups in the environment and begin moving with the onset of the running process in the environment. Also, the symptoms, caused by the pollution effects on the agents, appear in form of changes in color and are based on carboxyhemoglobin (COHb) levels (percentage) of each. The results indicate that among the considered older age groups, the members of the age group above 65, have had been mostly affected by pollution and the effect of pollution on the agents of the age group of 13 to 30 years old has been less than the other groups.
    Keywords: Air Pollution, Agent-based Modeling, GIS, Carboxyhemoglobin (COHb), Tehran
  • J. Chabokpour * Pages 473-486
    The present paper aims at investigating the applicability of hybrid cells in the series model for pollution transport inside the layered porous media. For this purpose, four layers of rock material have fallen inside the experimental flume, with eight sensors installed longitudinally inside the media to obtain experimental BTCs. In order to measure time parameters of the model, named , two different methods of LSCF and MM have been examined. The model's sensitivity as well as its temporal equations with different parameters have been assessed. Finally, results show that at the fixed time step, the model is more sensitive to parameter (advection zone time parameter) rather than residential time parameters, to which the moment relations are more sensitive. A detailed computation of the related transport parameters has been operated and the Peclet number, crossing velocity, dispersion coefficient, time to the max, and maximum concentration have been calculated. Eventually, the model's applicability for large-scale porous media has been proven with only one unit of the cells.
    Keywords: Layered gravel, HCIS model, plug flow, mixed reservoirs, Peclet number
  • S. M. Hallaji, S. Siami, B. Aminzadeh * Pages 487-499
    The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and volatile solids (VS) have been measured during the anaerobic digestion process in systems with and without pre-treatment. Hydrogen peroxide pre-treatment has been tested in two concentrations of 30 g H2O2/kg VS and 60 g H2O2/kg VS and thermal pre-treatment has been performed at two temperatures of 75℃ and 90℃. According to the results, the solubalisation of organic matter considerably improves, when combined hydrogen peroxide and thermal pre-treatment is employed. As a result, in comparison to the control reactor, higher amounts of biogas (71%) and methane (81%) have been produced in the bioreactor, pre-treated with combined hydrogen peroxide (30 g H2O2/kg VS) and heat (90 ℃). In addition, the removal efficiency of COD and VS from the digested sludge has been enhanced in the pre-treated reactors (up to 39% and 92%, respectively) in comparison to the control reactor. The improved methane yield, COD, and VS are of paramount importance, not only because higher amounts of renewable energy are obtained from the anaerobic digestion process, but because sludge transport costs are reduced and the digested sludge obtains a higher potential application to agricultural lands.
    Keywords: Anaerobic digestion, waste activated sludge, hydrogen peroxide, thermal pre-treatment, methane production
  • A. Zeraatkar Moghaddam *, E. Ghiamati, R. Pakar, M. R. Sabouri, M. R. Ganjali Pages 501-514
    The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and finds out that 3D-HND-G yields higher efficiency in removal of CR, especially at lower pHs. This is due to its better dispersibility and greater surface area. Also, batch adsorption technique has been utilized and all involved parameters that affect the removal efficiency, e.g. initial pH, adsorbent dosage, initial CR concentration, and contact time are examined. The study applies Central Composite Design (CCD) to figure out their efficacies, with the results showing the following optimum conditions for removal of 100 ppm of CR: 4 mg/mL of the adsorbent, pH = 3, and 25 min of contact time. Furthermore, it studies the adsorption activity of the synthesized adsorbent, including kinetics, isotherm, and desorption comprehensibly. The adsorption isotherm is well-fitted through the Langmuir model, exhibiting high CR adsorption capacity. Also, CR adsorption kinetics shows that it has obeyed a pseudo-second-order kinetic model, indicating that adsorption has made the rate-limiting step. In addition, the proposed adsorbent has successfully been applied to reduce the concentration of CR as hazardous dye materials in the water and wastewater samples.
    Keywords: Carbon nanostructures, Treatment, optimization, Isotherm, Kinetic
  • T. Shahriari *, N. Mehrdadi, M. Tahmasebi Pages 515-524
    Nickel and cadmium usually enter the environment and water resources through wastewater, released by various industries, and may have adverse effects. The current study employs α–Fe2O3 nanoparticles of 20-40 nm in order to remove nickel and cadmium from the wastewater of Saba Battery Company. Also, it investigates the influence of effective parameters on adsorption process, including pH, contact time, and the adsorbent rate so that it can optimize the adsorption process. The maximum adsorption rate of nickel and cadmium can be observed in pH ranges of 5 to 9. In addition, adsorption rates for nickel (at pH = 7) and for cadmium (at pH = 5) have been 92.98% and 93.97%, respectively. By increasing the adsorbent rate, the adsorption grows, due to the increase in absorbate surface area, and an optimum adsorbent rates of 0.15 g and 0.2 g are obtained for cadmium and nickel, respectively. The maximum nickel and cadmium adsorption rates occur during the first 60 min of contact with nanoparticles. In this study, adsorption kinetics and isotherms have also been investigated and it has been found that the adsorption kinetics of both nickel and cadmium ions follow the pseudo-second-order model, while adsorption isotherms of nickel and cadmium follow the Freundlich model.
    Keywords: Adsorption Isotherms, Adsorption Kinetics, Battery Industry, Heavy metals
  • R. Shirdam *, A. Nourigohar, S. Mohamadi Pages 525-536
    Filter cake is one of the main waste products of zinc processing industries and it contains a high amount of toxic heavy metals. In this research in order to reduce heavy metals leachability in filter cake, Portland cement, natural pozzolan, diammonium phosphate (DAP), triple superphosphate (TSP), lime, zinc oxide and ground granulated blast furnace slag (GGBFS) have been used. This research’s results suggest that even though leachability of lead in the filter cake is quite low, it should be noted that limestone doubles the solubility level of Pb due to the mineralogical nature of the waste, by converting its sulphate form (PbSO4) to its carbonate form (PbCO3), which is more soluble. TSP was the only additive capable of reducing the leachability of metal elements in the filter cake as well as stabilizing the amounts of Pb and Cd in TCLP extracts within the limit. Although all additives were able to reduce Cd leachability, TSP and ZnO had the most remarkable efficiency. According to XRD results, the main factor in lead stabilization using TSP was a reduction in the amount of PbSO4 (with high Ksp) and an increase in PbS (with low Ksp), which ultimately reduced lead leachability. The Pozzolan which was used for the first time as a stabilizer demonstrated a good performance in reducing the leachability of Cd, Ni and Cu. In addition, due to the pseudo-cementitious properties of Pozzolan, it can reduce leachability of metal elements, along with other additives such as cement, by increasing the solidification efficiency.
    Keywords: Waste products, immobilization, zinc processing, TSP, Iran
  • O. S. Koshesh, H. R. Jafari * Pages 537-554
    The need for oil and natural gas as a major source of energy is vital. On the one hand, it has affected the political and economic equations at the international, regional and national level. On the other hand, it has had negative effects on sociocultural, legal, and environmental aspects as well as on the physical and mental health of human beings. Therefore, the need to provide an environmental policy that addresses the various dimensions of the oil and gas industry will be necessary. The present paper aims to set up a conceptual model of environmental policy for sustainable development in the oil and gas industries of the Kurdistan Region through the use of these 6 components: political, economic, sociocultural, technological, legal and environmental. It will also be using the techniques of PESTLE, SWOT, SPACE, FANP, FDEMATEL, and simulation with the VENSIM software. The results show the weights of the criteria respectively are Political; 1.59, Economic; 0.78, Sociocultural; 0.00, Legal; -0.99, Technological; -0.61 and Environmental; -0.70. So that all components are important, but that political and economic factors have a significant influence on environmental policies and oil and gas industries. Sociocultural components have a neutral role and the technological, legal and environmental components are impressible. Finally, fifteen strategies for the formulation of an effective environmental policy in the oil and gas industry were presented.
    Keywords: Environmental policy, oil, gas industries, Sustainable Development, Kurdistan Region
  • T. A. Shishir *, N. Mahbub, N. E. Kamal Pages 555-568
    The term bioremediation describes biological machinery of recycling wastes to make them harmless and useful to some extent. Bioremediation is the most proficient tool to manage the polluted environment and recover contaminated river water.  Bioremediation is very much involved in the degradation, eradication, restriction, or reclamation varied chemical and physical hazardous substances from the nearby with the action of all-inclusive microorganisms. The fundamental principle of bioremediation is disintegrating and transmuting pollutants such as hydrocarbons, oil, heavy metal, pesticides and so on. Different microbes like aerobic, anaerobic, fungi and algae are incorporated in bioremediation process. At present, several methods and approaches like bio stimulation, bio augmentation, and monitoring natural recovery are common and functional in different sites around the world for treating contaminated river water. However, all bioremediation procedures it has its own pros and cons due to its own unambiguous application. Above all, utilization of bioremediation paving a minimal inconsiderably contaminated, healthy as well as safe and sound future.
    Keywords: Bioremediation, Biodegradation, Polluted River, Water Treatment, Contamination
  • H. Hoveidi *, S. Nasehi, Namin Imanpour, A. Nohegar Pages 569-583
    Unbalanced distribution of population in a country like Iran as well as accelerating urbanization and environmental degradation, both arising from incorrect location of industrial areas, are two problems that require appropriate industrial development policies to get resolved. Considering the expansion of industrial areas along with their role in contamination of the environment, it is necessary to develop strategies to improve environmental performance. The purpose of this study is to provide strategies for establishment of industrial areas, based on environmental spatial assessment, using SWOT technique and GIS. In this method, once the spatial data are mapped and analyzed with GIS software, leading to determination of effective factors for location of industrial areas and their, the maps of such effective factors can be prepared. After weighing effective layers on location, based on the AHP model, the GIS software capabilities have been used to merge and overlap the maps and the industrial areas location map are prepared. The map has been classified in five classes (very poor, poor, moderate, good, and very good) and finally, based on the final map and SWOT analysis, optimal strategies have been developed to reduce environmental degradations. The location analysis with integrated GIS and SWOT method is effective for providing optimal strategies. More accurate results of this study show that the study area is located in "defensive" position and the authorized areas to locate the industrial areas in the "very good" class are over 240,191.9 hectares large, being mostly in the south and southwest of Tehran.
    Keywords: Site selection, Industrial area, Fuzzy, Strategic Planning, MCDM
  • K. Javidi Alsadi, N. Esfandiari * Pages 585-596
    With the growth and development of chemical plants, the amount of mercury released in wastewater has increased. Mercury in wastewater contains harmful compounds which are hazardous to the human health and living organisms. Therefore, its removal from wastewater is significant. There are various techniques or methods available for removing mercury from aqueous solutions. This study focused upon the removal of mercury from aqueous solution with commercial activated carbon and activated carbon from sugarcane bagasse.  Activated carbon produced from sugarcane bagasse was used as adsorbent. This adsorbent was used to remove mercury from aqueous solution. For this purpose, first, the optimal mercury solution pH for mercury removal was obtained. Effective parameters such as contact time, initial concentration of mercury, adsorbent dose and agitation speed were investigated. The mercury adsorption was increased when the mass of activated carbon was increased. Increasing the initial mercury concentration leads to decrease in mercury adsorption efficiency. The results of experiments indicated that the speed of the stirrer was not considered to be an effective factor in the mercury adsorption. Experiments were also carried out on a commercial activated carbon. Adsorption results obtained for sugarcane bagasse activated carbon were compared with commercial activated carbon.  The adsorption efficiency was increased as the contact time was increased.  Finally, the experiment was carried out on water samples released from South Pars platforms. In addition to the mercury removal, other heavy metals removal such as lead and cadmium were also carried out.
    Keywords: Activated carbon, Sugarcane Bagasse, Mercury, Adsorption efficiency, South Pars
  • H. Darabi *, S. Islami Farsani, H. Irani Behbahani Pages 597-610
    Although complexity and vulnerability assessment of mountain landscapes is increasingly taken into consideration, less attention is paid to ecophronesis-based solutions so as to reduce the fragile ecosystem vulnerability. The main propose of this study is to provide an insight of mountain complex landscape vulnerability and propose ecophronesis-based solutions in strategic planning framework for reduction of vulnerability. The study has been carried out by following five steps in Chelgard Mountain landscapes (center of Iran): First, it determines the evaluation framework on basis of rapid literature review. Second, the vulnerability is assessed, using Analytic Hierarchy Process (AHP), in accordance with experts’ opinion. In the third step, the results provide a zoning map of vulnerability. Afterwards, the study suggests a strategic plan to manage the area environmentally and, finally, the solutions are proposed, based on ecophronesis, in order to not only solve the plight but also reduce the vulnerability. Results from the vulnerability assessment indicate that anthropogenic stressors intensify the vulnerability. While local ecological wisdom is shaped over time in the area, its application faces challenges as a result of rapid and immense socio-economic changes. It seems that sustainability of mountain ecosystem needs to regenerate social structures on basis of socio-ecological capital. Main characteristics of these adopted social structures include their balance with the ecosystem and adoption with new lifestyles.
    Keywords: Ecological Vulnerability, Vulnerability assessment, mountainous landscape, Ecological wisdom, Iran
  • Y. Ghavidel *, A. M. Khorshiddoust, M. Farajzadeh, H. Pourshahbaz Pages 611-621
    Ahvaz can be regarded as one of the most polluted cities in the world in terms of air pollution. Successive years of drought and weather conditions in recent years have resulted in particulate matter (PM10) concentration in Ahvaz. In this study, using probability distribution techniques, an appropriate threshold to identify the PM10 maximum extreme concentrations (MEC) has been detected. Based on log-logistics probability distribution, which has the best fit to the data of PM10 concentration in Ahvaz, the 0.99 percentile threshold which is specified by 1516 μg/m³ is known as the primary PM10 concentrations in Ahvaz air. Based on the mentioned threshold, 24 days in which the PM10 concentration was equal to or more than the threshold were selected for synoptic analysis. Analysis of the circulation of weather types showed that two weather types circulations at 500 hPa level provide the climatic conditions for the occurrence of (MEC) caused by PM10 concentration ≥1516 μg/m³ in Ahvaz in the first type (which is for hot days). Under such condition, the closed high pattern of 500 hPa level is accompanied by the ground low pressures. In the second type (which is for cold and transitional days) the closed high pattern of 500 hPa level is accompanied by the ground high pressures. In addition, this study showed that the (MEC) of PM10 in both models fed with several different sources at different levels and due to being multi-source, storms can create MEC.
    Keywords: environmental climatology, air pollution hazard, particulate matter concentration, synoptic analysis, Ahvaz
  • S. Usefi, M. Asadi, Ghalhari * Pages 623-636
    Natural coagulants have received much attention for turbidity removal, thanks to their environmental friendliness. The present study investigates potential application of rice starch for removal of turbidity from aqueous solutions. It considers the effects of four main factors, namely settling time (40-140 min), pH (2-8), slow stirring speed (20-60 rpm), and rice starch dosage (0-200 mg/L), each at five levels, by means of central composite design. Results show that a quadratic model can adequately describe turbidity removal in case of non-autoclaved rice starch with statistics of R2= 0.95, R2adj.= 0.91, R2pred.= 0.77, AP = 23.75, and CV = 4.77. It has also been found that the performance of non-autoclaved rice starch is superior to the autoclaved variety, in terms of removal efficiency and floc size. In the optimal point, predicted by the model, a removal efficiency equal to 98.4% can be attained, using non-autoclaved rice starch, which is higher than that of the autoclaved rice starch (71.29%). The significant effective parameters have proven to be settling time along with pH. Overall, rice starch can be considered a promising high potential coagulant for removal of turbidity from water or wastewater.
    Keywords: Rice starch, high turbidity aqueous, response surface methodology
  • M. A. Salam *, M. M. Kabir, L. F. Yee, A. A, L Eh Rak, M. S. Khan Pages 637-648
    The present investigation has been conducted to assess the status of physico-chemical parameters as well as the concentrations of some selected heavy metals to understand the present scenario of water quality at Perak River basin, Malaysia. The temperature, turbidity, pH, EC and DO values of all the examined samples have been within the range of 25.0 to 30.5 0C, 39.5 to 168.00 NTU, 6.8 to 7.33, 30.3 to 113.8 μs/cm and 3.62 to 7.01 mg/L, respectively. The concentrations of trace metallic constituents have been determined by means of Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), giving the following ranges: Cr: 0.01 to 0.052 mg/L; Pb: 0.01 to 0.03 mg/L; Zn: 0.11 to 0.92 mg/L; Fe: 1.38 to 5.55 mg/L; Mn: 0.10 to 0.25 mg/L and Ca: 2.55-23.23 mg/L, respectively. The concentrations of heavy metals at downstream of Perak River water were higher than the concentrations of upstream. The order of heavy metallic constituents in the water samples was Fe > Zn > Mn > Cr > Pb. R mode Cluster Analysis (CA) suggests that multiple anthropogenic activities like urban runoff, agricultural runoff, discharges of vehicles washing and workshops, land use changes, unplanned settlements, domestic effluents, wastewater of livestock husbandry farms etc., are influencing the physico-chemical parameters and heavy metals concentrations of Perak River water. The present study is highly significant for providing baseline information of potential hazardous level of heavy metals to human health, environment, and sustainable water resources management for economically and environment friendly uses of Perak River.
    Keywords: Surface water pollution, Heavy metals, Cluster analysis, ICP-OES, Physico-chemical characteristics
  • M. Topal *, E. I. Arslan Topal Pages 649-655
    In this study, the concentrations of Zn and Cr in downstream waters from Uzunçayır Dam (Tunceli, Turkey) were monitored during spring (March, April, May) and summer (June, July, August) season. Zinc and Cr concentrations in surface water samples were detected using the ICP-MS device. According to the data obtained the lowest Zn and Cr concentrations in the spring season were 65.43±3.2 μg/L in March at 10th day for Zn and 0.28±0.02 μg/L in March at 10th and 20th day for Cr, the highest Zn and Cr concentrations were determined to be 83.12±4.1 μg/L in May at day 30 for Zn and 0.48±0.02 μg/L in May at day 30 for Cr. The lowest Zn and Cr concentrations in summer season were 55.48±2.7 μg/L at 30th day in August for Zn and 0.54±0.03 μg/L at 10th day in June for Cr. The highest Zn and Cr concentration in summer season were found as 69.48±3.5 μg/L in June at day 10 for Zn and 1.23±0.06 μg/L in August at day 30 for Cr. The Zn and Cr concentrations in the downstream of Uzunçayır Dam were found to be smaller than the Zn and Cr concentrations given by the Surface Water Quality Regulation (SWQR). As a result, it was determined that there was no harm in using water from the Uzunçayır Dam as irrigation water or drinking water in terms of Zn and Cr concentrations.
    Keywords: Downstream, monitoring, water quality, Tunceli, Turkey
  • V. Bharti, B. Gupta, J. Kaur * Pages 657-669
    Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen isolates screened showed growth in basal medium containing 25 mg/l of fluorene/phenanthrene as the only carbon source. These selected isolates were acclimatised with step wise increased concentrations of flourene/phenanthrene for 165 days in basal medium. The acclimatised strains were identified and characterised on the basis of their morphological and biochemical characteristics and 16S rRNA gene sequence analysis. Results showed close relatedness of the isolates to Pseudomonas aeruginosa sp. and Bacillus safensis sp. Biodegradation studies carried out with these acclimatised strains at optimum conditions (pH 7 and temperature 30°C) showed 62.44% degradation of fluorene and 54.21% of phenanthrene in 10 days by Pseudomonas sp. VB92, whereas, Bacillus sp. JK17 degraded 43.64% of fluorene and 59.91% of phenanthrene in 12 days, at an initial concentration of 200 mg/l, as determined by HPTLC. During fluorene degradation by Pseudomonas sp. VB92, one metabolite was identified as fluorene,1,4-dihydro. An anionic biosurfactant (emulsification index of 80%) produced by strain VB92 during growth with PAHs, improved its degradation rate. This showed strong potential of the acclimatised strains for bioremediation and reclamation of polyaromatic hydrocarbon contaminated sites.
    Keywords: Acclimatisation, Biodegradation, Flourene, Phenanthrene