فهرست مطالب

Polyolefins - Volume:4 Issue: 1, Winter 2017

Polyolefins Journal
Volume:4 Issue: 1, Winter 2017

  • تاریخ انتشار: 1395/11/12
  • تعداد عناوین: 11
|
  • Igor Chmutin*, Ludmila Novokshonova, Petr Brevnov, Guzel Yukhayeva, Natalia Ryvkina Pages 1-12
    There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler concentration, temperature, deformation and frequency of electric field. These relationships are compared with those for composites based on other carbon fillers including both nanoscale (carbon nanotubes, carbon black) and micron-sized (graphite, schungite) fillers. More specific electrical properties of investigated materials such as lower percolation threshold and higher dielectric permittivity compared to those for composites based on other carbon fillers are attributed to the plate-like shape of graphite nanoplates. These materials are distinguished also by their high electrical stability against temperature and deformation. Therefore, it makes graphite nanoplates the most preferable conductive filler for some practical applications. Some possible application areas for UHMWPE/graphite nanoplates nanocomposites will be also discussed.
    Keywords: Ultra-high molecular weight polyethylene, in, situ polymerization, composite materials, graphene, electrical properties
  • Milad Fonouni, Reza Yegani *, Sattar Anarjani, Akram Tavakoli Pages 13-26
    An essential characteristic for high performance inherently hydrophobic membranes such as microporous high density polyethylene (HDPE) membranes is to have a hydrophilic surface. In this project, wet chemical functionalization as a facile and effective method was developed to give a hydrophilic property to HDPE membranes using polar functional groups. KClO3, K2Cr2O7 and KMnO4 were selected as oxidizing agents. The optimum concentrations and treatment time intervals were determined for each oxidizing agent. Water contact angle and pure water flux measurements were conducted to evaluate the surface hydrophilicity and membrane performance, respectively. The results showed that among different oxidizing agents, 1wt% K2Cr2O7 solution with 60 min immersion time had the highest impact on the pure water flux. The percentage of re-construction phenomenon was about 4.70%, 21.94% and 32.6% for the HDPE membranes treated by KClO3, K2Cr2O7 and KMnO4, respectively. In addition, the attenuated total reflectance spectra-Fourier transform infrared spectroscopy (ATR-FTIR) results confirmed the presence of hydroxyl groups (O–H peak appeared at 3418.78 cm−1) in the membrane modified by KClO3. Bovine serum albumin (BSA) filtration experiments revealed that the total fouling ratio (TFR) and irreversible fouling ratio (IFR) decreased from 88.10% and 42.60% for pristine membrane to 65%, 68% and 72%
    and 26.60%, 29.30% and 35% for the modified membranes treated by KClO3, K2Cr2O7 and KMnO4, respectively. The results indicated that incorporation of hydrophilic functional groups on the surface of HDPE membranes improved the fouling resistance behavior.
    Keywords: Microporous high density polyethylene membrane, wet chemical oxidation, functionalization, KClO3, K2Cr2O7, KMnO4
  • Sara Shahbazi *, Yaser Jafari, Fathollah Moztarzadeh, Gity Mir Mohammad Sadeghi Pages 27-41
    Poly (propylene fumarate) (PPF), a linear unsaturated polyester consisting of alternating propylene glycol and fumaric acid units, can be cured in vivo to fill the skeletal defects with minimal surgical intervention. Many different methods have been reported for synthesizing PPF, but none of them gives a clear method. The present paper introduces two new methods in PPF synthesis: Modified reflux system (MRS) and mixed reflux-distillation system (MRDS). Similarly, the effects of applying vacuum (vacuum sequence, time, vacuum applying position, and the distance between vacuum applying position and reactor) as well as nitrogen gas (used continuously or only as an N2 blanket) on the PPF synthesis have been studied. The PPF obtained using optimum reaction condition has been characterized by using NMR, FTIR, and GPC analyses. It is demonstrated that the efficiency of MRDS in synthesizing PPF is higher than that of MRS. Nitrogen gas, vacuum applying position, continuously/stepwise-continuously applying vacuum and other parameters show an important role in the polymerization of PPF in both the MRDS and MRS systems.
    Keywords: Poly (propylene fumarate), Modified reflux system, Mixed reflux-distillation system
  • Alireza Nikfarjam*, Roham Rafiee, Mostafa Taheri Pages 43-68
    Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinforced polymers either theoretically or experimentally. The results reported in literature are reviewed and evaluated based on employed and/or developed methods by focusing on the electrical conductivity, permittivity and permeability properties. Available analytical and numerical simulations for predicting electrical properties of CNT-based composites are also reviewed. Besides, equivalent circuit modeling of nanocomposites containing CNTs is presented. The influence of effective parameters on overall electrical and electromagnetic characteristics of CNT-reinforced polymers is discussed based on published data. Therefore, highlighting the recent trends and challenges engaged in new investigations, those aspects which are required to be more deeply explored are introduced.
    Keywords: carbon nanotubes, nanocomposite, electrical properties, permittivity, permeability
  • He Xin Zhang *, Seung Ri Lee, Dong Ho Lee, Xue Quan Zhang, Keun Byoung Yoon Pages 69-77
    Despite the great potential of graphene as a nanofiller, achieving homogeneous dispersion remains the key challenge for effectively reinforcing polyolefin (such as polyethylene (PE) and polypropylene (PP)) nanocomposites. Therefore, in this research, we report a facile combined in situ polymerization and masterbatch method for fabricating PP/reduced graphene oxide (rGO) nanocomposites. In the polymerization stage, the synthesized catalyst exhibited a very high activity toward propylene polymerization, while the resultant PP/rGO with a very high isotactic index (I.I. = 99.3), broad molecular weight distribution (Mw/Mn = 14.9), and thermal stability was produced. After meltblending with commercial PP, a significantly increased modulus along with no observable change in tensile strength and elongation-at-break were achieved via the addition of a very small amount of rGO; these properties resulted from the suitable dispersion and good interface adhesion of the graphene sheet and PP matrix. Thus, this work provides a method for production of high performance PP.
    Keywords: polypropylene, nanocomposites, in, situ polymerization, graphene
  • Nikoo Karami, Reza Jahanmardi * Pages 79-86
    The present work is aimed to find a new and efficient type of antioxidants for polypropylene. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one, generally known as thymolphthalein, on thermo-oxidative stability of polypropylene in solid and melt states were evaluated and compared with those of SONGNOX 1010, an efficient commercially used antioxidant for the polymer. Oven ageing experiments followed by Fourier transform infrared (FTIR) spectroscopy showed that thymolphthalein increased thermo-oxidative stability of the polymer outstandingly in the solid state and its stabilization efficiency was comparable to that of SONGNOX 1010. In addition, measurements of oxidative induction time (OIT) and oxidation onset temperature (OOT) revealed that thymolphthalein improved thermo-oxidative stability of the polymer in the melt state significantly. It was also observed that thymolphthalein did not interfere with the stabilization action of SONGNOX 1010 in the polymer neither in melt nor in solid state. On the basis of the obtained results, a probable mechanism for the stabilization action of thymolphthalein in the polymer is proposed.
    Keywords: Antioxidant, degradation, polypropylene, stabilization
  • Valentina Nikolaevna Panchenko*, Ludmila Viktorovna Vorontsova, Vladimir Aleksandrovich Zakharov Pages 87-97
    The interaction of the external donor (propyltrimethoxysilane - PTMS) with titanium-magnesium catalysts (TMCs) containing dibutylphthalate (DBP) as internal donor, which were prepared in different ways, was studied by chemical analysis and infrared diffuse reflectance spectroscopy (DRIFTS). The chemical composition of the catalysts after their interaction with heptane solutions of PTMS, PTMS/AlEt3 or AlEt3 during 1h at 70°C showed that this interaction led to removal of both TiCl4 and DBP from the catalysts. The fractions of DBP and Ti extracted, as well as the amounts of PTMS and AlEt3 bound, depended on the method of synthesizing the catalysts. DRIFT spectroscopy data concerning the state of DBP in the catalysts, before and after treatment with heptane solutions of PTMS or PTMS/AlEt3 during 1h at 70°C, showed that PTMS could substitute both TiCl4 and DBP, while adsorbing on coordinatively unsaturated Ti and Mg ions in the catalyst. The presence of AlEt3 played a key role in the interaction of PTMS with the catalyst. Activity data for propylene polymerization showed that treatment of TMC catalysts with PTMS before polymerization led to a sharp activity decrease due to deactivation of active sites, while the interaction of the catalyst with PTMS in the presence of AlEt3 led only to a slight decrease of activity, probably due to deactivation of non-stereospecific active centers.
    Keywords: Titanium-magnesium catalyst, propylene polymerization, dibutylphthalate, propyltrimethoxysilane, DRIFTS
  • Amir Mostafapour, Ghasem Naderi, Mohammad Reza Nakhaei * Pages 99-109
    In this study, thermoplastic polyolefin elastomeric (TPO) nanocomposites were fabricated by friction stir processing. The effect of different pin geometries on clay dispersion and mechanical properties of the TPO nanocomposite reinforced with 3% wt nanoclay has been first investigated. The optimum pin geometry namely threaded cylindrical pin was then used to fabricate the nanocomposites containing 3, 5 and 7 wt% nanoclay. The results showed that increase in the clay content increased the tensile strength and tensile modulus of the nanocomposite from 15.8 to 22.76 MPa and 568 to 751 MPa, respectively. The experimental stress – strain curves of nanocomposites were compared with eight constitutive models including Mooney – Rivlin, the second-order polynomial, Neo – Hookean, Yeoh, Arruda – Boyce, Van der Waals and the third- and sixth-order Ogden. The comparisons showed that there was an agreement between the experimental data and the sixth-order Ogden model. Three micromechanical models Halpin – Tsai, inverse rule of mixture and linear rule of mixture were applied to investigate the Young’s modulus of nanocomposites. Because of the significant difference between the Young’s modulus obtained from these models and the ones obtained from experimental data, a modifying factor was used to improve the theoretical predictions obtained from the models.
    Keywords: Pin geometry, friction stir process, nanocomposite, clay, mechanical behavior
  • Effect of the synthesis conditions of titanium-magnesium catalysts on the composition, structure and performance in propylene polymerization
    Natalya N. Chumachenko*, Vladimir A. Zakharov, Sergey A. Sergeev, Svetlana V. Cherepanova Pages 111-122
    Supported catalysts synthesized via the interaction of Mg(OEt)2 with TiCl4 in the presence or absence of an internal stereoregulating donor (di-n-butyl phthalate), with different solvents (chlorobenzene, n-undecane, n-heptane) at different titanation temperatures have been studied by a set of physicochemical methods. Data on the chemical composition, X-ray structure and pore structure of these catalysts as well as data on their activity and stereospecificity in polymerization of propylene were obtained. Chemical composition, structure, activity and stereospecificity depend primarily on the presence of an electron donor stereoregulating component and on the solvent nature and titanation temperature. Activity of the catalysts is determined by totality of different characteristics: the chemical composition, in particular, the presence of inactive by-products like TiCl3(OEt), the MgCl2 X-ray structure and pore structure. More active catalyst which was synthesized under optimal conditions in the presence of di-n-butyl phthalate contains the minimal amount of TiCl3(OEt) by-product, and has a more ordered X-ray structure and a homogeneous mesoporous structure with a narrow mesopore size distribution.
    Keywords: Supported Ziegler-Natta catalysts, titanium, magnesium catalysts formation, propylene polymerization
  • Gabriel Theurkauff, Katty Den Dauw, Olivier Miserque, AurÉlien Vantomme, Jean Michel Brusson, JeanfranÇois Carpentier*, Evgeny Kirillov* Pages 123-136
    A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction.
    Keywords: 3, methylbut-1-ene, vinylcyclohexane, catalysis, polymerization, NMR analysis
  • Oxygen-barrier films based on low-density polyethylene/ ethylene vinyl alcohol/ polyethylene-grafted maleic anhydride compatibilizer
    Mohammadreza Rahnama, Abdulrasoul Oromiehie, Shervin Ahmadi *, Ismaeil Ghasemi Pages 137-147
    In this research, high oxygen-barrier films were organized based on low-density polyethylene (LDPE)/ ethylene vinyl alcohol (EVOH)/ polyethylene-grafted maleic anhydride (LDPE-g-MA) compatibilizer. The effects of 10–30 wt. % EVOH and 0–10 wt. % LDPE-g-MA loadings on the properties of final films were evaluated. The morphology of specimens was observed by using scanning electron microscopy (SEM). Oxygen transfer rate (OTR) results revealed that the addition of EVOH up to 30 wt. % to neat LDPE could significantly decrease oxygen permeability. The LDPE-g-MA which increased the permeability needed to be fine-tuned its amount based on the EVOH loading in different samples. The experimental results revealed that the addition of 30 wt. % EVOH to the LDPE matrix without adding LDPE-g-MA gave the best oxygen barrier properties. Elastic modulus and tensile strength increased with incorporation of EVOH and LDPE-g-MA into the polyethylene matrix. On the other hand, elongation-at-break decreased with the addition of EVOH and increased with the introduction of compatibilizer to the samples. Incorporation of EVOH and LDPE-g-MA into the LDPE matrix and increasing their amounts led to higher storage modulus and zero shear rate viscosity, but lowered the frequency value at the intersection point of storage modulus (G') and loss modulus (G''). The only exception was that in the samples without compatibilizer, the increase in the EVOH content resulted in a lower zero shear rate viscosity and a higher frequency value at the
    intersection point of G' and G''.
    Keywords: Polymer blends, alloys, Barrier, Compatibilizer, Oxygen permeability, Polyethylene