Dynamic loading effect on the permeability of fractured rock mass using DFN-DEM approach

Abstract:
Summary:This study has been performed with the aim of investigation of dynamic loading effect on permeability of rock mass. The method is 2D numerical modeling that because of discontinuous nature of rock mass and also existence of fracture networks in it, the modeling has been carried out by Discrete Fracture Network-Discrete Element Method (DFN-DEM) conflation approach. Results show that dynamic loading changed the transmissivity of fractures and consequently increased the permeability of fractured rock mass.
Introduction
Dynamic loading is a phenomenon that may be applied to rock mass in nature and even leads to changes in some of its geo-mechanical properties such as permeability. The variation in the amount of fluid flow from which the predicted value in a sensitive project such as underground power stations, hydrocarbon fluid flow in its reservoirs and repositories of buried of nuclear waste can cause damages and demolitions. Hence, investigation of dynamic loading effects on the permeability of rock mass is important. In previous studies, some research has been accomplished in the field of rock mass hydromechanics and interaction between static stress and fluid flow in rock mass. However, the lack of evaluation of stress form (static or dynamic) on permeability of rock mass has been felt.
Methodology and Approaches: In this study hydro-mechanical numerical modeling has been carried out under static and dynamic stress conditions. All of geometrical and mechanical properties of the models have been for Sellafield site in Cambria, England. As previously mentioned, modeling has been performed by DFN-DEM conflation approach using UDEC. In order to realize results of the method, data from a real earthquake have been utilized as a dynamic boundary conditions. Modeling in this study has been conducted in two groups. Group 1 contains models which have been placed under fluid flow without dynamic loading (in static conditions). In the group 2, the same models have been put under dynamic loading and then under fluid flow conditions.
Results and
Conclusions
The results show that in contrary with the previous consideration, at least dynamic loading changes the transmissivity of fractures and therefore violates the permeability of fractured rock masses. Despite the fact that in our case study, fracture stiffness is relatively high, calculated permeability of rock mass is greater by 26% at dynamic loading compared with the static loading condition. The major reason is that dynamic loading has caused successive moving the blocks and possible changes in their positions relative to the previous state.
Language:
Persian
Published:
Journal of Aalytical and Numerical Methods in Mining Engineering, Volume:6 Issue: 11, 2016
Pages:
101 to 111
magiran.com/p1571809  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!