SYNTHESIS OF BIMETALLIC NANOPARTICLES FE-NI AND INVESTIGATION OF THEIR PERFORMANCE IN AR14 DYE REMOVAL FROM AQUEOUS SOLUTIONS

Author(s):
Message:
Abstract:

According to studies, nearly 15 percent of synthetic dyes enter wastewater during production and consumption operations annually, which is very dangerous and causes many problems for the environment. Thus, removing these compounds is mandatory. NZVI can be used in detoxification of many environmental pollutants, as a reducing agent and catalyst. In order to develop the technology of NZVI, bimetallic nanoparticles are prepared by deposition of a noble metal, such as nickel, over iron nanoparticles. In this study, as a simple and applicable method in the laboratory, bimetallic nanoparticles, Fe-Ni, were made using the method of chemical deposition of iron chloride (FeCl3.6H2O) by a strong reducer, sodium bohr hydride (NaBH4), under nitrogen gas. To ensure the size and nature of the nanoparticles, SEM and XRD experiments were performed. Then, the nanoparticles were used in a slurry system to remove the azo dye (ccid red 14). To achieve optimum conditions during the experiments, the parameters of the dye initial concentration, nanoparticle dosage, pH, elapsed time from creation to implementation of the nanoparticles, shaking speed and temperature were investigated. Then, to identify other e ective factors, a control experiment was performed under the optimal conditions and it was found that ethanol, nickel, and light do not have any e ect on dye removal. The reducer, however, was able to remove the dye completely. Also, the use of nickel with 3 wt% iron increased dye removal eciency by 14.65%. According to the survey conducted, optimal conditions were obtained when the tests were performed at temperatures of 25  20C with newly synthesized nanoparticles that have 0.05 gr/L concentration with an initial concentration of dye equal to 200 mg/L and pH of 7.5 and a beginning mixer time of two minutes. These nanoparticles had very high activity, so, removal e- ciency after 2, 30 and 240 minutes, was 79.39, 90.52 and 94.42 percent, respectively. Finally, LC-Mass experiments indicated that after 4 hours of reaction, the azo band in the dye was broken.

Language:
Persian
Published:
Sharif Journal Civil Engineering, Volume:32 Issue: 4, 2017
Pages:
33 to 44
magiran.com/p1684407  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!