Comparing the performance of Support Vector Machines, Gene Expression Programming and Bayesian networks in predicting river flow (Case study: Kashkan River)

Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background And Objectives
Quantitative prediction of river discharge one of the most important elements in the management of surface water resources, especially take suitable decisions in occurrence of floods and drought events. Various approaches introduced in hydrology to predict river discharge which intelligence models are the most important ones.In this study, recorded data sets in kashkan watershed area located in lorestan were used to investigate the precision of different river discharge prediction models. The support vector machine model as a gene expression programming model and Bayesian network models selected for modeling of daily river discharge and the results were compared to examine the accuracy of studied models. In some studies, the expressed models used for daily river discharge prediction but the main objectives of this study are application of these models to predict daily discharge for a watershed.
Materials And Methods
In this study kashkan river basin was selected as the study area and observed daily river flow of this basin in the poldokhtar station were applied for calibration and validation of models. For this purpose, first 80 percent of daily river flow data (2004-2011) were selected to calibrate models and 20 percent of data (2012-2014) were used to validate models. Gene expression programming solution is a technique that is automatically programmed using the PC programming and evolutionary algorithm is a member of the family. Support vector machine is also an efficient learning system is based on the theory of constrained optimization. Bayesian networks, display meaningful relationships between parameters in the process is unclear and non-cyclic directed graph of nodes to display random variables for representing probabilistic relationships between variables considered magmatic arc. Criteria of correlation coefficient, root mean square error and coefficient, mean absolute error and performance of models were used to evaluation models.
Results
The results showed that all three models, Bayesian networks, support vector machine and gene expression programming, in a structure consisting of 1 to 5 delay gives better results than any other structure. Also of results according to the evaluation criterion was that the models used support vector machine model, most accurate R=0.880 and the lowest Root Mean Square Error RMSE=0.002m3/s and the lowest average absolute error MAE=0.001m3/s the validation phase is capable. Also, the estimates of minimum, maximum and median has shown good performance.
Conclusions
support vector machine model outperformed the Bayesian network modeling and gene expression programming. So, support vactor machine model can be effective in forecasting the daily stream flow and in turn facilitate the development and implementation of surface water management strategies will be useful. And a step in making management decisions to improve the quantity of surface water create.
Language:
Persian
Published:
Water and Soil Conservation, Volume:24 Issue: 4, 2017
Pages:
161 to 177
magiran.com/p1774763  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!