Characterization and Transformation of Silicon Dioxide Nanoparticles in Aqueous Suspensions: Influence of pH

Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Silicon dioxide (SiO2) in nanoscale had been detected as waste product in river water for the past two decades and it is recently proven to have adverse effects toward human and animal health, the ecosystem and water treatment system. The removal of SiO2 nanoparticles (NPs) from water still remains a challenge due to its small size and unknown interactions within the water body. In this study, dynamic light scattering (DLS) technique was applied to characterize SiO2 in terms of surface charge and particle size as a function of pH within the range of 2 to 11 to analyze the aggregation behavior and significance of the intermolacular interactions in deionized (DI) water and tap water. DLS analysis identified both pH values of the point of zero charge (pHPZC) of SiO2 NPs in DI water and tap water at pH 3.2 and pH 2.8 respectively. The initial pH was discovered at 7.1 in tap water with a mean particle size of 346 nm and an average surface charge value of -27 mV compared to initial pH of DI water which was 5.4 with mean particle size of 295 nm and an average surface charge value of -33 mV. It was found that both in DI water and tap water, SiO2 NPs aggregated and increased in particle size but reduced in surface charge when pH slowly decreased towards their respective pHPZC from the initial pH by adding 0.25M of hydrochloric acid. The mean particle size at pHPZC in DI water is measured at 1750 nm larger compared to the mean particle size in tap water indicating that the presence of other ions in tap water suppressed the aggregation process. In conclusion, results suggests that pH does influence the surface charge of SiO2 NPs and affect the stability behavior and its interaction processes in aqueous suspensions.
Language:
English
Published:
Iranica Journal of Energy & Environment, Volume:8 Issue: 4, Autumn 2017
Pages:
262 to 268
magiran.com/p1788452  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!