A Neural Network Approach to Predict Acute Allograft Rejection in Liver Transplant Recipients Using Routine Laboratory Data

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background
Discovery of non-invasive methods for acute rejection in liver transplant patients would contribute to preservation of liver function in the graft. Recently, however, outcome prediction based on biostatistical models like artificial neural networks (ANNs) is increasingly becoming impressive in medicine.
Objectives
The aim of this study was to obtain a predictive model based on ANN technique and to figure out the best time for early prediction of acute allograft rejection after transplantation in liver transplant recipients.
Methods
Feed-forward, back-propagation neural network was developed to predict acute rejection in liver transplant recipients using clinical and biochemical data from 148 liver transplant recipients over days 3, 7, and 14 post-transplantation. Sensitivity and receiver-operating characteristic (ROC) analysis were done to reveal the importance of input variables and the performance of the neural network.
Results
The results were compared with a logistic regression (LR) model using the same data. Our results showed that the data related to day 7 gave the best results in terms of ANN performance; and the most important factors in the predictive model were aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The ANN’s accuracy was 90%, sensitivity was 87%, specificity was 90% in the testing set, and the performance of the ANN was better than that of the LR model. The ANN recognized correctly eight out of ten acute rejection patients and 34 out of 36 non-rejection ones in the testing set.
Conclusions
This study suggests that ANN could be a valuable adjunct to conventional liver function tests for monitoring liver transplant recipients in the early postoperative period.
Language:
English
Published:
Page:
3
magiran.com/p1792972  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!