Effect of Functionalized Iron Oxide Nanoparticles on Zinc Uptake and some Growth Indices of Wheat in Greenhouse Conditions

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Nanotechnology has created a range of new applications in different stages of agriculture. The application of Nano-fertilizers for plants is of vital importance because of its unique properties, such as the specific surface and high reactivity. Many studies have investigated the effect of metal nanoparticles on yield and concentration of elements in the plant. The present study was conducted with the aim of investigating the effects of Functionalized Iron Oxide Nanoparticles (FIONPs) on plant yield, concentration and uptake of Zinc in root and shoots of wheat under greenhouse cultivation in a calcareous soil.
Materials and Methods
This study was conducted in the greenhouse condition as a randomized complete design with three replications. Treatment consisted of functionalized iron oxide nanoparticles (Hydroxyl: OH, Carboxyl: COOH and Amine: NH2) each at three levels (100, 200 and 300 mg.kg-1), ZnSO4 (40 kg.ha-1) and Control. During the experiment, some parameters such as the plant height and chlorophyll index were measured. At the end of the cultivation period, dry weight and Zn concentration of root, shoot and grain was determined using Atomic absorption apparatus (Perkin elmer A_Analyst 200 model). Likewise, content of soil available Zn was measured using DTPA.
Results
The amount of available zinc in all levels of iron oxide nanoparticles, except Amine iron oxide nanoparticles (at levels of 200 and 300 mg / kg), was significantly (P<0.01) increased compared to control. The maximum amount of soil available Zn were observed in levels of 300, 200 and 100 mg.kg-1 Carboxyl iron oxide nanoparticles with 83.64, 70.91 and 63.64% increment compared to control, respectively. Effect of treatments of functionalized iron oxide nanoparticles and zinc sulfate on chlorophyll content, plant height and dry weight of shoots was significant (P<0.01). The maximum yield of root and shoot was obtained at the level of 300 mg.kg-1 of Carboxyl iron oxide nanoparticles with 34.74 and 25.1% increment compared to control, respectively. The maximum grain yield was observed at the level of 300 mg.kg-1 of Carboxyl iron oxide nanoparticles with 36.51% increment compared to control. The maximum chlorophyll content was obtained in Carboxyl iron oxide nanoparticles (at level of 300 mg. kg-1) with 11.38% increment compared to control. The maximum of Zinc concentration in root, shoot and grain was observed at the level of 300 mg.kg-1 carboxylic oxide nanoparticles with 103.62, 159.26 and 26.87% increment compared to control, respectively.
Conclusions
The results showed that application of FIONPs improved soil pH and subsequently available zinc of soil. Also, nanoparticles increased the yield, concentration and uptake of zinc in root, shoots and grain of wheat. Therefore, based on the obtained results from this study, it can be said that use of new strategies such as nanoparticles can be useful in improving soil conditions and bioavailability of Micronutrient like Zinc and reducing chemical fertilizers.
Language:
Persian
Published:
Journal of Agricultural Engineering, Volume:41 Issue: 4, 2019
Pages:
131 to 146
magiran.com/p1974600  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!