Effect of interaction of Zinc sulfate treatment and sodium chloride oxidative stress on two Rootstock of Qazvini and Badami Zarand Pistachio

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

Soil salinity due to sodium chloride is one of the problems in pistachios in the country And this problem whit The shortage of water supplies is intensifying. in this case Using the Resistant Rootstosk and proper nutrition plays an important role. The role of nutrition with zinc compounds in reducing oxidative damage in salinity stress in plants is not clearly understood. The nutritional effects of zinc containing compounds on the growth rate of some Plant species exposed to salinity are reported by various researchers. But little information is available on its effect on the various characteristics of pistachio Rootstosks. The present study aimed to investigate the effect of zinc sulfate treatment on some physiological, biochemical and pistachio growth factors under salinity stress and its goal is to reduce the harmful effects of salinity stress in the soil. Materials and Methods The experiment was conducted as a factorial With three replications in the Research greenhouse of The park organization of Qom municipality in 2017-2018. Number of 1512 pistachio seeds of Badamimi Zarand and Qazvini from Pistachio Research Institute of Iran were prepared And germinated. For accurate monitoring, Nutrition with zinc sulfate on seedlings was fed with Hooglund's 50 percent solution in greenhouse conditions and hydroponic culture until it reached height and growth. Grown seedlings were exposed to four levels of salinity including zero (control), five, 10, 15 (ds/m) sodium chloride and three levels of zinc sulfate from the source of ZnSO4.7H2O containing zero (control), one and five mM. The seedlings were transferred to Bu-Ali Sina University's Department of Horticulture .Seedlings height, leaf fresh weight, calcium molar fraction in root, root sulfohedril groups, root membrane permeability, zinc ion leakage and malondialdehyde levels in leaf were evaluated.

Results

Increased sodium chloride concentration up to 15 (ds/m)No application of zinc sulfate Reduced traits of seedlings height ( Badami Zarand, 64.2%, Qazvini 53.3%), The fresh weight of leaf (Badami Zarand 64.7%, Qazvini 55.5%), Fraction of calcium molar in the root (Badami Zarand 54.5%, Qazvini 50%), And roots of sulfohydryl root (Badami Zarand 29.6%, Qazvini 14.3%) Compared to control treatment. With increasing salinity levels up to 15 dS / m Permeability of root membran, zinc Ion leakage and the level of malondialdehyde increased in the leaf. The consumption of zinc sulfate increases the fresh weight of the leaf, Seedlings height, Calcium molar fraction in the root, and concentration of sulfohedril groups in the roots. The application of zinc sulfate resulted in the lowest permeability of root membrane among all treatments in Qazvin (53%). The interaction of zinc sulfate treatment 1 mM and salinity stress of five (ds/m) would reduce zinc ion leakage (Badami Zarand 14.3%, Qazvini 2.2%) Compared to control treatment. The highest amount of malondialdehyde (DW) molg-1μ 5/2) In salinity treatment, 15 (ds/m) No application of zinc sulfate In the rootstock of Badami Zarand, all treatments were observed.

Conclusion

The results indicated a positive effect of zinc on increasing plant resistance and better control of free radicals in salinity stress Particularly at levels of 10 and 15 (ds/m). The rootstock texture of Qazvin compared to the Badami Zarand has a higher concentrations of sulfohedril groups (Bdami zarand 11.33%, Qazvini 191.83%).And the ionic leakage is lower (Zarand 87/15 μg.g-1 root4h-1, Qazvini, 61/4 μg.g-1 root4h-1). Accordingly, Qazvini rootstosk is more stable than the Badami Zarand rootstok Because it has the highest level of malondialdehyde in leaves, it is more resistant to sodium chloride stress And Qazvini rootstock can be introduced to the salt stress according to the climatic conditions of each region as a stable base.

Language:
Persian
Published:
Journal of Plant Production, Volume:26 Issue: 4, 2020
Pages:
245 to 261
magiran.com/p2089602  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!