Physicochemical Characterization of nano-clinoptilolite/-TCP /gelatin Scaffold and its Application in Periodontics

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and aim

Due to the composite structure of the jaw bone, gelatin and beta-calcium phosphate (b-TCP) biomaterials have been used repeatedly in bone tissue engineering. Despite the desirable properties of scaffolds made, their application has been limited due to their poor mechanical properties and high degradability. The aim of this study was to investigate the effect of clinoptilolite biomaterial with unique mechanical properties such as remarkable mechanical properties, low degradation rate and highly favorable biocompatibility properties in gelatin and b-TCP scaffolds.

Material and Method

Preparation of porous scaffold as a template was made leading to freeze drying method using weight percent of 50 for gelatin, 25 b-TCP and 25 Clinoptilolite. SEM analysis and image j software was used in order to evaluation of scaffold surface and finding of porosity frequency. Finally, compressive strength of scaffold was evaluated. 

Results

In clinoptilolite / b-TCP / Gelatin scaffolds, porosity up to 250 nanometers was recorded which was the best for angiogenesis. In addition to gelatin, clinoptilolite also had a positive effect on porosity. Using compressive strength analysis, increasing of Youngchr('39')s modulus was also observed from 100 to 166 mega Pascal by that Clinoptilolite is the most effective agent in modifying this modulus.

Conclusion

Considering the results, clinoptilolite that in addition to improving and enhancing the mechanical properties of composite scaffolds, had a significant effect on the increase in the size and porosity of jaw bone tissue engineering scaffolds. According to the obtained characteristics it can be said that the sample presented is in accordance with the properties of extracellular scaffold (ECM) of jaw bone tissue and would be a suitable choice in tissue engineering of this type of bone.

Language:
Persian
Published:
Journal of Research in Dental Sciences, Volume:17 Issue: 4, 2021
Pages:
279 to 286
magiran.com/p2219911  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!