Effects of Inoculation with Mycorrhizal Fungi and Azotobacter on Growth and Oxidative Responses of Wheat to Salinity and Cadmium Stresses

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

In recent decades, the increasing trend of concurrent soil salinity and heavy metal stresses in arid and semi-arid regions all over the world has become a serious threat for agricultural production and human food security. Cadmium (Cd), as a heavy metal, can be readily absorbed by plant roots, leading to disruptions in plant physiological and biochemical activities. A factorial pot experiment was carried out based on a completely randomized design with the aim of investigating the beneficial effects of root symbiosis with mycorrhizal fungi and azotobacter on the responses of two bread wheat (Roshan and Bahar) and two durum wheat (Yavarus and Behrang) cultivars grown in a naturally Cd-contaminated soil to salinity stress. Experimental factors were consisted of (1) irrigation water salinity in three levels including 0, 75 and 150 mM NaCl and (2) inoculation treatments in four levels including no-inoculation as control, plus separate inoculation by Rhizophagus intraradices and Funneliformis mosseae mycorrhizal fungi and Azotobacter sp. bacteria. Salinity stress was observed to cause an increase in shoot Cd concentration, antioxidant enzymes activity and the levels of proline, hydrogen peroxide and malondialdehyde, while it decreased shoot dry weight. Under saline condition, the salt tolerant cultivars (Roshan and Behrang) showed a lower increase rate of shoot Cd concentration as compared to salt sensitive cultivars (Bahar and Yavarus), while they showed a higher increase rate of antioxidant enzymes and proline content. Wheat plants inoculated by F. mosseae, Rh. intraradices and Azotobacter sp. revealed a higher shoot dry weight (20, 12 and 7%, respectively) as well as higher activities of catalase (22, 18 and 12%), peroxidase (39, 32 and 20%) and ascorbate peroxidase (64, 56 and 47%) antioxidant enzymes, while a lower shoot Cd concentration (24, 11 and 5%) and lipid peroxidation activity (14, 10 an 5%) as compared to non-inoculated plants. The results from this experiment showed that soil salinization increased cadmium concentration in wheat plants but the inoculation by mycorrhiza and rizobacter stimulated antioxidant enzyme defense system and reduced lipid peroxidation and cadmium absorption from soil.

Language:
Persian
Published:
Journal of Plant Process and Function, Volume:9 Issue: 5, 2021
Pages:
257 to 272
magiran.com/p2253359  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!