Investigation of bubble velocity profile in the column flotation cell by computational fluid dynamics simulation

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Summary:

Hydrodynamic components play an important role in the process performance of column flotation. CFD as a numerical method can help analyze and predict flow components. In this paper, the single-bubble rising velocity profile in the flotation column is studied in two-phase with CFD. Simulations have been performed in Fluent software using a two-phase VOF model. A computational column with a square cross-section of 10 cm and a height of 100 cm has been considered. The air is taken in by a single bubble from the bottom of the column by an internal sparger. To validate the simulation results, a series of experiments were performed exactly according to the mentioned conditions, while imaging was used to record hydrodynamic components such as inlet airflow, bubble diameter, and bubble rise velocity, etc. The experimental results are consistent with previous observations that studies by others. Also, the results of the simulations performed are qualitatively and quantitatively consistent with the experimental results. The results show that CFD simulation can well predict the rise of the bubble and its related parameters in the flotation column, including the bubble rise rate with a difference of less than 5% compared to the experimental values. In this paper, the single-bubble rising velocity profile in the flotation column is studied in two-phase with CFD.

Introduction

This article consisted of two parts: the experimental tests and the CFD simulations. The authors tried to present a set of setting to simulate the bubble rising velocity as well as possible by their facilities.

Methodology and Approaches:

Simulations have been performed in Fluent software using a two-phase VOF model. A computational column with a square cross-section of 10 cm and a height of 100 cm has been considered. The air is taken in by a single bubble from the bottom of the column by an internal sparger. To validate the simulation results, a series of experiments were performed exactly according to the mentioned conditions, while imaging was used to record hydrodynamic components.

Results and Conclusions

The results showed that CFD simulation can well predict the rise of the bubble and its related parameters in the flotation column, including the bubble rise rate with a difference of less than 5% compared to the experimental values.

Language:
Persian
Published:
Journal of Aalytical and Numerical Methods in Mining Engineering, Volume:11 Issue: 27, 2021
Pages:
43 to 54
magiran.com/p2307332  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!