Application of QSAR Method in the Design of Enhanced Antimalarial Derivatives of Azetidine-2-carbonitriles, their Molecular Docking, Drug-likeness, and SwissADME Properties

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The resistance of the P. falciparum strain to some of the antimalarial drugs has been a dominant dilemma facing the treatment of this fetid disease. This necessitates the detection and development of new antimalarial agents targeting the P. falciparum. Azetidine-2-carbonitriles reported for its antimalarial activities, could provide an alternative to the customized antimalarial drugs. Leading to the use of quantitative structure-activity relationship (QSAR) studies, which relates the structures of Azetidine-2-carbonitriles with their activities to generate predictive models. The structures were optimized using density functional theory (DFT) DFT/B3LYP/6-31G* basis set to generate their molecular descriptors, where five predictive models were constructed using the generated descriptors. The models were constructed using the genetic function algorithm component of a material studio, where the model with good statistical parameters, high coefficient of determination (R2) = 0.9465, cross-validated R2 (Q2cv) = 0.8981, Q2 (L4O)cv = 0.9272, and highest external validated R2 (R2pred) = 0.6915 was selected as the best model. These statistical results show the robustness, excellent power of prediction, and validity of the selected model. The descriptor, SpMax2_Bhp (the maximum absolute eigenvalue of Barysz matrix for n = 2 was weighted by polarizability), was revealed to be the most influential in the model due to its highest mean effect. The descriptor played a role in the design of sixteen (16) theoretical derivatives of Azetidine-2-carbonitriles using compound 25 as the design template by increasing polarizability of the compounds through substitution of the various group with electron deactivating groups (F, I, Cl, SO3H, CN, NO2, etc.) at different position of the template. The designed compounds were docked with Plasmodium falciparum dihydroorotate dehydrogenase (Pf-DHODH), giving compound D9 the highest binding energy. The designed compounds were further screened for their drug-likeness, where they all pass Lipinski's RO5. All the compounds show good skin permeability coefficient and have low Gastrointestinal absorption while few compounds D1, D2, D3, D14, and D15 inhibiting the CYP1A2.
Language:
English
Published:
Iranian Journal of Pharmaceutical Research, Volume:20 Issue: 3, Summer 2021
Pages:
254 to 270
magiran.com/p2366602  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!