Simulation of Cleaner Column Flotation Circuit at Miduk Copper Concentrator

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The cleaner circuit at Miduk copper concentrator consists of 3 parallel flotation columns (4m in diameter and 12m in height). The cleaner concentrate is re-cleaned by 3 parallel flotation columns (3.2m in diameter and 12m in height), when the desired concentrate grade is not reached by the cleaner columns alone. This research work deals with simulation of the cleaner column flotation circuit at Miduk copper concentrator using USIM PAC simulator with the aim of improving the process metallurgical performance. For that purpose, the parameters of the models including flotation rate constants (kf, ks), residence time distribution (RTD), gas hold-up in collection zone (εg), mean bubble size (db), collection (Rc) and froth (Rf) zone recoveries along with some operating and geometrical variables were determined. The flotation rate constants were calculated by fitting the experimental data to the fast and slow floating components model. The residence time distribution of the flotation columns was measured by the tracer injection technique (using saturated NaCl solution as tracer). The gas hold-up and mean bubble size in the collection zone of the cleaner columns were estimated from the pressure difference and the drift flux techniques, respectively. The froth recovery was quantified by measuring the concentrate mass flow rate at different froth depths and extrapolation to the zero froth depth. The cleaner circuit was sampled five times, of which three times were used for calibration and two times for validation of the models. The mass flow rate, copper content and size distribution of the cleaner columns concentrate and tailings were accurately predicted using the simulation models. Increasing the number of operating cleaner columns improved the copper recovery (from 45.67% to 54.64%) at the expense of a reduction in the final concentrate (from 26.17% to 24.22%). The number of recleaner stages in all cases improved the the final concentrate (from 26.17% to 36.99% in the circuit with 2 cleaners and from 24.22% to 36.13% in the circuit with 3 cleaners). Increasing the feed slurry solids concentration reduced the size-by-size fractional copper recovery of the cleaner columns. Increasing the feed slurry solids concentration reduced the cleaner columns copper recovery in all size fractions. The best configuration of the cleaner and recleaner flotation columns was proposed.
Language:
Persian
Published:
Journal of Mineral Resources Engineering, Volume:6 Issue: 4, 2022
Pages:
109 to 127
magiran.com/p2376767  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!