A novel nanocomposite containing graphene oxide and ABC triblock copolymer for methotrexate delivery

Author(s):
Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
Background and objective

Graphene oxide has been extensively used in theranostics due to its drastic properties, biocompatibility, and chemical stability. Graphene has a large surface area and provides enough space for loading of anticancer drugs. In our study, a novel thermo-and pH-responsive graphene-containing nanocomposite was synthesized for methotrexate (MTX) delivery into cancer cells.

Materials and methods

Triblock copolymer of poly[(2-hydroxyethylmethacrylate)-b-(N-isopropylacrylamide)-b-(dimethylaminoethyl methacrylate)] abbreviated as poly(HEMA-b-NIPAM-b-DMAEMA) was prepared by reversible addition fragmentation chain-transfer (RAFT) polymerization. The triblock copolymer was attached onto the surface of graphene oxide nanoparticles via carboxylic groups of graphene oxide. Structure of poly(HEMA-b-NIPAM-b-DMAEMA) was studied by Fourier transform infrared (FT-IR) spectroscopy and Proton nuclear magnetic resonance (1HNMR). Morphology of the nanocomposite was studied by field emission scanning electron microscope (FESEM) and its thermo-responsive behavior was investigated by lower critical solution temperature (LCST), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). Polydispersity index (PDI) was evaluated by gel permeation chromatography. pH-responsive behavior of the nanocomposite was also studied by evaluation of MTX release from the structure at pH 5.4 and 7.4 in the laboratory.

Results and conclusion

Graphene oxide/poly(HEMA-b-NIPAM-b-DMAEMA) has a sheet-like structure with average  thickness of 55.6 nm. The triblock chains successfully covered graphene oxide. Characterization of poly(HEMA-b-NIPAM-b-DMAEMA) resulted in Mn = 26875 g,  MW = 33862 g, and PDI = 1.26. Encapsulation efficiency of the structure was 91% for MTX. Release rate of MTX from the graphene nanocomposite was pH-dependent. In a buffer solution, release rate of 31.2% was achieved at pH 7.4 and temperature of 37 °C after 150 h. In comparison, release rate of 52.4% was calculated for pH 5.4 after 150 h at the same temperature. Therefore, the synthesized graphene nanocomposite is an appropriate candidate as a carrier of anticancer drugs in treatment of cancer cells.

Language:
English
Published:
Human, Health and halal Metrics, Volume:2 Issue: 2, Summer-Autumn 2021
Pages:
1 to 11
magiran.com/p2396478  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!