Investigating the Behavior of MG63 Cells on Polycaprolactone and Polycaprolactone/Collagen 3D Scaffolds for Bone Regeneration

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
3D printing of scaffolds at low temperatures is very promising for making artificial bone graft alternatives with more performance than traditional techniques. One of the most promising strategies in bone tissue engineering has focused on the development of biomimetic scaffolds. Ceramic-based scaffolds with osteogenic ability and mechanical properties are promising candidates for bone repair. The aim of this study was to adapt the flexibility and increasing the effect of inducing osteogenesis of Polycaprolactone (PCL) scaffold prepared by fused deposition modeling (FDM) method, using the combination of Collagen (COL) as a natural polymer with synthetic polymer and to investigate the behavior of MG63 cells on it. on it. After preparing the scaffold, scanning electron microscope (SEM), energy dispersive X-ray (EDX) and ATR-FTIR spectroscopy were used. After 1,7,14 days, the ossification process of MG63 cells in different treatments was performed using alizarin red staining and alkaline phosphatase activity. The non-toxicity of scaffolds was also evaluated by MTT assay to ensure cell proliferation. From under a microscope, it was found that tissue engineering scaffolds distributed and connected almost rectangular pores evenly. The PCL/COL scaffold showed a significant difference in terms of viability compared to the polycaprolactone scaffold only in the differential medium (P ≤ 0.0001). The results of evaluating ALP activity in PCL/COL scaffolds were significantly higher than uncoated PCL scaffolds and control (P ≤ 0.0001). The results of this study showed that the use of PCL/COL scaffold can be considered a suitable medium for proliferation and differentiation of MG63 cells in bone tissue engineering. Therefore, the PCL/COL composite scaffold prepared by FDM printer can be widely used in bone tissue engineering due to the cell survival by COL.
Language:
Persian
Published:
Journal of Animal Biology, Volume:16 Issue: 1, 2023
Pages:
113 to 130
magiran.com/p2623977  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!