Experimental Investigation of Adsorption of Sulfur Compounds from Model Fuel with Modified NaY Zeolite Adsorbent

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Adsorption capacity and selectivity are two major challenges that adsorption desulfurization faces. One way to overcome these challenges is to use mesoporous zeolites. In this study, the effects of mesoporosity on the adsorption desulfurization performance with NaY zeolite adsorbent were investigated. In order to optimize the parameters, the desilication operation was performed with a mixture of sodium hydroxide (NaOH) and tetrapropylammonium hydroxide (TPAOH) solution at room temperature with ratios of R=  = 0, 0.25, 0.5, 0.75. The adsorbents were characterized by XRD, BET, FE-SEM and FT-IR. The results showed that ATY (0.5)-0.25R adsorbent has the highest mesopore surface with the value of 54.03 m2/g. Meanwhile, the adsorption desulfurization performance in a batch reactor was tested using different model fuels containing the sulfur compounds thiophene and dibenzothiophene. The results showed that different ratios of NaOH/TPAOH solution play an important role in the adsorption of sulfur compounds. In addition, Cu metal ion was impregnated on the parent zeolite and ATY (0.5M)-0.25R adsorbents in order to increase the adsorption capacity. It has been shown that the adsorption capacity of the adsorbents increases with ion exchanging of Cu metal ion, so that the Cu-0.25R adsorbent has the highest adsorption capacity of the sulfur compounds thiophene and dibenzothiophene with the values ​​of 18.28 and 21.83 mg S/g, respectively. In this regard, the effect of temperature on the Cu-0.25R adsorbent on the adsorption of thiophene has been investigated. It has been shown that, the adsorption of thiophene has increased with increasing temperature and has reached its maximum at 50 ° C. Thermodynamic studies showed that the adsorption process is endothermic. The kinetic models of adsorption of sulfur compounds followed the pseudo – second – order equation. The adsorption isotherm was well matched to the Langmuir isotherm equation and its maximum adsorption capacity for thiophene and dibenzothiophene sulfur compounds was 18.38 and 23.43 mg/g, respectively.
Language:
Persian
Published:
Iranian Journal of Chemistry & Chemical Engineering, Volume:41 Issue: 4, 2023
Pages:
131 to 154
magiran.com/p2632075  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!