Transient Response of a Functionally Graded Piezoelectric Rectangular Plane with Multiple Cracks under Electromechanical Impacts

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The analytical method is developed to examine the fracture behavior of a functionally graded piezoelectric rectangular plane (FGPRP) with finite geometry under impact loads. The material properties of the FGPRP vary continuously in the transverse direction. Two different types of boundary conditions are examined and discussed in the analyses. The finite Fourier cosine and Laplace transforms are employed to obtain stress and electric displacement fields in the finite plane containing electro-elastic screw dislocation. Based on the distributed dislocation technique, a set of integral equations for the finite plane is weakened by multiple parallel cracks under electromechanical impact loads. By solving numerically, the resulting singular integral equation, the dynamic stress intensity factor (DSIF) is obtained for the electrically impermeable case. The new results are provided to show the applicability of the proposed solution. The effects of the geometric parameters including plate length, width, crack position, crack length, loading parameter, and FG exponent on the dynamic stress intensity factors are shown graphically and discusseThe analytical method is developed to examine the fracture behavior of a functionally graded piezoelectric rectangular plane (FGPRP) with finite geometry under impact loads. The material properties of the FGPRP vary continuously in the transverse direction. Two different types of boundary conditions are examined and discussed in the analyses. The finite Fourier cosine and Laplace transforms are employed to obtain stress and electric displacement fields in the finite plane containing electro-elastic screw dislocation. Based on the distributed dislocation technique, a set of integral equations for the finite plane is weakened by multiple parallel cracks under electromechanical impact loads. By solving numerically, the resulting singular integral equation, the dynamic stress intensity factor (DSIF) is obtained for the electrically impermeable case. The new results are provided to show the applicability of the proposed solution. The effects of the geometric parameters including plate length, width, crack position, crack length, loading parameter, and FG exponent on the dynamic stress intensity factors are shown graphically and discussed.
Language:
English
Published:
Iranian Journal of Mechanical Engineering Transactions of ISME, Volume:24 Issue: 1, Mar 2023
Pages:
40 to 69
magiran.com/p2664157  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!