Human Serum Albumin Structure in Presence of Different Concentrations of Cortisol and Glucose: An In Vitro Modeling Under Normal and Hyperglycemic Conditions

Message:
Abstract:
Background
Glucose is an essential element in the supply of body’s energy. In diseases such as diabetes, glucose increase is associated with disturbance in metabolism. Cortisol is an important hormone in the regulation of glucose metabolism, and human serum albumin (HSA) is one of the most important glucose and cortisol transmitters in blood. Interaction between albumin and these ligands could affect HSA secondary structure and its stability.
Objectives
The aim of this study was to investigate HSA secondary structure in the presence of different concentrations of glucose and cortisol.
Methods
This was an in vitro (analytical/descriptive) study in which, completely randomized design was used to study the interaction between human serum albumin at 37°C at different glucose concentrations of 0, 80, 180, 240, and 400 mg/dL and cortisol at concentrations of 0, 10, 20, and 40 µg/dL. Intrinsic fluorescence spectroscopy and Circular dichroism (CD) were performed to obtain data.
Results
HSA secondary structure underwent changes in the presence of different concentrations of cortisol and glucose. P values less than 0.01 were considered to be statistically significant. Fluorescence spectroscopy and CD results showed that at normal glucose concentrations, HSA was very flexible, beta-sheet content reduced, and the maximum increase in fluorescence and blue-shift happened. At higher concentrations of glucose, HSA became rigid. Also, HSA in presence of 10 µg/dL cortisol was very flexible; but a cortisol concentration of 40 µg/dL caused stability in HSA structure in presence of different glucose concentrations.
Conclusions
Under normal glucose conditions, very low cortisol concentrations create large changes in HSA secondary structure. At normal glucose concentrations, some of the binding sites of HSA that are all occupied by glucose at higher concentrations become available to cortisol. Cortisol structure is very hydrophobic, which causes large changes in HSA secondary structure and significant increases in quenching and blue shift. In conclusion, binding of compounds such as medicines to HSA sites may be affected by competitive bindings of glucose, depending on its concentration in the blood.
Language:
English
Published:
Iranian Red Crescent Medical Journal, Volume:19 Issue: 3, Mar 2017
Page:
14
magiran.com/p1669949  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!