سارا زلقی
-
نظارت بر سلامت پل های بزرگراهی امری اساسی برای دستیابی به یک سیستم حمل و نقل قابل اعتماد است. روش شناسایی آسیب مبتنی بر ارتعاش از تغییرات ویژگی های ارتعاشی سازه ها برای شناسایی آسیب ها و اطمینان از وضعیت سلامت سازه ها استفاده می کند. در این مطالعه، از شاخص های آسیب اصلاح شده پارامترهای مودال مبتنی بر ترکیب مقدار مطلق انعطاف پذیری مودال و انرژی کرنش مودال به عنوان ورودی شبکه های عصبی عمیق کانولوشن استفاده می شود تا تصمیمات ایمن و ارزیابی آسیب قابل اعتماد در تعیین آسیب های تکی در تیرهای فولادی پل های بزرگراهی فراهم شود. همچنین شبکه عصبی عمیق ادغام شده جهت تخمین شدت آسیب تکی به طور هوشمندانه مورد استفاده قرار می گیرد. شبکه عصبی با استفاده از شاخص های آسیب حاصل از شبیه سازی عددی مدل اعتبارسنجی شده پل آموزش داده می شود. شاخص های آسیب به عنوان ورودی های شبکه عصبی از سناریوهای مختلف آسیب حاصل می شود. شبکه عصبی آموزش دیده برای شناسایی، مکان یابی و اندازه گیری شدت آسیب های ناشناخته تکی استفاده می شود. روش پیشنهادی پاسخی بر مشکلات شناسایی آسیب در تحقیقات گذشته می باشد. نتایج نشان داد که روش ارائه شده بر اساس شاخص های آسیب اصلاح شده مبتنی بر ترکیب مقدار مطلق و شبکه عصبی عمیق کانولوشن ادغام شده به صورت عملی و دقیق مکان و شدت آسیب های ناشناخته تکی را در تیرهای فلزی پل های چند دهانه بزرگراهی شناسایی می کند.
کلید واژگان: پایش سلامت سازه ها, شاخص انرژی کرنشی مودال, شاخص انعطاف پذیری مودال, تیر فلزی, شبکه عصبی عمیقCivil structures inevitably undergo damage over time due to various reasons such as environmental changes, material aging, load variations, and insufficient maintenance. Monitoring these structures, especially aging ones, is crucial to detect damage early on and implement suitable retrofitting measures, ensuring their continued safe and reliable operation without unexpected failures. Consequently, there has been significant research in this field, focusing on damage detection in both simple and complex structures. Health monitoring of highway bridges is essential for achieving a reliable transportation system. The vibration-based damage detection method uses changes in the vibrational properties of structures to detect damages and ensure a healthy state. In this study, the absolute value of the modal flexibility damage index and the modal strain energy damage index simultaneously are utilized to prevent unsafe decisions. These absolute values of modal strain energy and flexibility damage indexes are utilized as the bases for training deep neural networks (DNNs). These indexes are applied to provide safe decisions and reliable damage evaluation in steel girder of the highway bridges. The convolution neural network (CNN) is utilized for damage quantification estimation. The CNN is one of the deep learning models that can currently be applied in 2D dominant approaches, such as pattern recognition and speech recognition. In addition, these networks can utilize the 1D time domain and vibrational signal data via the convolutional layer. The initial stage of CNN model comprises combined convolutional and pooling layers that apply different filters to extract features. Following this, fully connected layers, similar to a hidden layer of a multilayer perceptron are incorporated. Ultimately, these layers are classified together with a softmax layer. The convolution layer acts as a filter that convolutes the input layer with a set of weights, adding bias and applying an activation function to the outcome. Gradient descent momentum methods (SGDM) can be employed to optimize the parameters in CNN network architecture. SGDM estimates the gradient with high velocity in any dimension. This method mitigates issues such as jittering and saddle points by utilizing high-velocity inconsistent gradient dimensions and the SGD gradients, respectively. Additionally, when the Current gradient approaches zero, the SGDM provides some momentum. The convolution neural network is trained to utilize damage indexes obtained from numerical simulation of the validated finite element model of the bridge. The damage indexes as the inputs for the neural network, which are achieved from different damage scenarios. Once network training and validation are completed, a well-trained neural network is used to detect, localize, and quantify the intensity of unknown damages. The proposed method overcomes previous damage detection problems such as false positive indications, the unreliability of a single damage index, and insufficient precision in determining the intensity. The results revealed that the presented method, based on the dual updated damage indexes and CNN, practically and accurately identified unspecified single damages' location and severity in multi-span beams. The new training method of deep neural network systems overcomes some shortcomings in ANN. Moreever, this deep neural network training scheme can reduce the need for huge amounts of input data and enhance the accuracy of network training. The method is capable in predicting single damage scenarios in steel beam.
Keywords: Structural Health Monitoring, Modal Strain Energy Damage Index, Modal Flexibility Damage Index, Steel Beam, Deep Learning -
Purpose
Rural tourism can be considered a country-related experience that includes a wide range of attractions and activities. They can be related to agriculture and might increase opportunities to provide services to local communities. In the same time, they can change the nature of geographical landscapes. Thus, this study aimed to investigate the feasibility of rural tourism development using the structural equation model in Gaikan Village of Aligudarz County.
Design/methodology/approachThis is applied study, in terms of purpose, and in terms of method, it is descriptive-analytical. To fulfill the purpose of the study, field study and survey were used. Using Cronbach's alpha test, the reliability for two feasibility components (attractions and capabilities of rural tourism, and obstacles and problems of rural tourism development), were 0.79 and 0.80, respectively, which indicates the good fit of the research tool. The statistical population consisted of three categories of experts, tourists and villagers (270 people in total: 13 experts, 129 tourists and 128 villagers) who were selected by simple random sampling. In order to analyze the data, exploratory factor analysis and structural equation modeling in SPSS20 and AMOS software were used.
FindingsThe findings showed that the most important attractions and tourism capabilities of Gaikan Village are in four main categories: cultural and religious attractions, use of organic product, rural welfare facilities and services, and natural attractions. Also, the most important restrictions and obstacles of tourism development in this village are: lack of proper investment, avoidance of using agricultural products and related industries, ignorance of local people about the benefits of tourism, lack of amenities, and creating environmental pollution. The last one has a significant relation with tourist development.
Research limitations/implicationsLack of proper access to transportation infrastructure, roads, and accommodations in the area of Aligudarz County has created limitations for the development of tourism in the study area. Moreover, access to tourists and key informants of rural issues (statistical population of the study) was one of the problems in the research.Practical implications- Due to the lack of transportation, accommodation, and public infrastructure in Gaikan Village, establishing the accommodations such as hotels as well as camps are suggested in the region.
Originality/valueThe feasibility of tourism development can lead to understanding the tourism process in accordance with the local systems and finally, designing a suitable local model.
Keywords: Feasibility, Rural tourism, structural equation model, Gaikan Village, Aligudarz County
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.