سیدعلی چاوشیان
-
هدف این مقاله معرفی، ارزیابی و کاربرد انواع مجموعه داده های بارش دیدبانی زمینی و ماهواره ای معتبر است که بر روی ایران داده مستمر و به روز دارند. تولید و کاربرد مجموعه های بارش بر اساس داده های ماهواره ای به دلیل تفکیک مکانی و زمانی بالا و همچنین پوشش مکانی تقریبا کامل جهانی در سال های اخیر به سرعت رو به گسترش است. در این مقاله توزیع مکانی هفت مجموعه بارش جهانی دیدبانی بر روی ایران با داده های باران سنجی در 228 پیکسل 0/25 درجه طول و عرض جغرافیایی که حداقل شامل سه باران سنج هستند مقایسه و بررسی شده است. مقایسه این نتایج نشان می دهند که مجموعه ها اختلاف زیادی در مقدار بارش سالانه بر روی پهنه ایران نشان می دهد (mm 180-260). این اختلاف در کرانه دریای خزر بالغ بر80 درصد میانگین بارش سالانه (حدود 300 میلی متر در سال) می رسد. داده های ماهواره ای روی منطقه سواحل دریای خزر و مناطق پر ارتفاع کوه های زاگرس واقع در جنوب غرب ایران بارش را با دقت کمتری نسبت به سایر نقاط برآورد می کنند. مجموعه های بارش زمینی بیشترین سهم از بارش سالانه را برای فصل بهار و سایر مجموعه ها بیشترین سهم را برای بارش زمستانی نشان می دهند. مقایسه بارش ماهانه، فصلی و سالانه مجموعه ها با داده های باران سنچی نشان می دهد مجموعه های ماهواره ای که با داده های باران سنجی تصحیح شده اند نتایج بهتری حتی نسبت به مجموعه های بارش زمینی دارند. مجموعه های ماهواره ای حال حاضر نیز بیش از سایرین بارش را کم برآورد می کنند.
کلید واژگان: ارزیابی بارش, بارش ماهوار ه ای, سنجش از دور, مجموعه های بارشIntroductionPrecipitation has an important role not only in the variety of scientific applications including climate change, climate simulations, weather modeling, and forecasting but also in decision making such as water management, hydrology, agriculture, drought, and crisis management. Different temporal resolutions and coverages of data are required for this and other applications. For example, long term meteorological data are needed for monitoring the climate variability and trends and for climate simulation assessments in local and global scales. Also, present data are used to assimilate into forecast models to improve the predictions. Historical and present precipitation data are the main requirements to monitor and predict droughts which help to early warning system and water management decisions in a country. The recent rainfall data are also the primary input of hydrological models to flood forecast in a basin. The accurate estimation of precipitation amount is vital for these applications.
Materials and MethodsHowever, rainfall is discontinuous and varies greatly both in time and space which makes it parallel with difficulties in the actual measurements. The two main sources of observational precipitation datasets are ground-based rain gauge measurements and space-based remote sensing satellite estimations each one with its own limitations and strengths. Historically, rain-gauge measurements have been considered as the “ground truth”, but they have mostly limited to land surface, the measurements are sparse or nonexistent in some regions like deserts or high topographic areas. Although rain gauges measure rainfall directly, their data are only representative for a limited spatial extent and may be subjected to some errors caused by local effects such as topography or wind-induced undercatch. An alternative approach which can provide relatively homogenous estimates with complete coverage over most of the globe is based on using satellite observations. Therefore, satellite data are capable to estimate precipitation over the oceans and over remote areas where few or no ground measurements are available. The satellite-based precipitation estimates are derived mainly from visible, infrared (IR) and passive microwave (PMW) radiances which are measured by satellites. Although the visible channels cannot be used at night, the IR data are available in fine spatial resolution (about 3-4 km) with high temporal sampling (15 min) which are provided by geosynchronous satellites. Another source of data is PMW that can be used to estimate rainfall more directly. Low-altitude polar-orbiting satellites serve to measure the PMW data. Although, the microwave sensors can penetrate into the clouds and provide more information about the cloud characteristics such as water vapor, cloud particles, and structure of hydrometeors, but at the expense of temporal sampling. In recent years, different algorithms have been developed using the combination of the IR, Visible (VIS) and PWM observations to provide more accurate rainfall estimations in high spatial and temporal resolutions. To demonstrate the similarities and differences between the spatial distribution of different satellite-based and gauge-based precipitation datasets over Iran we compared seven different datasets. For comparisons all datasets are regridded to 0.25-degree latitude longitude spatial resolutions. Then the spatial distribution of the mean and relative standard deviations of annual precipitation of these datasets have been calculated. We also used more than 2000 rain gauges to evaluate the selected datasets. To reduce error only 228 pixels, include at least 3 rain gauges are used for comparisons of spatial average of monthly, seasonal and annual precipitation of gauge and seven datasets.
Results and DiscussionThe results showed a large amount of differences in annual precipitation between seven selected datasets. The most differences pronounce in wet areas in the north of Alborz Mountain, in the semi-arid and arid regions of the central desert and in the high mountainous areas of the southern Zagros. The reason for these differences is that not only satellite-based but gauge-based datasets have large uncertainties estimating areal precipitation in such high topographic areas. The satellite products are prone to some errors arising from not fully understood physical process, sampling error and parameter estimation. Therefore, verification of precipitation datasets is one of the most important parts of the data development and refinements. In this paper, the spatial distribution of seven different global-observational precipitation datasets over Iran are compared for the period 2003-2007. At first all datasets were regridded to 0.25° spatial resolutions using linear interpolation method. Then, the mean and relative standard deviation of annual precipitation of the datasets were calculated to analyze the spatial discrepancies between datasets. The areal average of annual precipitation and the contribution of seasonal precipitation were calculated for comparison purposes. The results showed that areal average of annual and seasonal precipitation for 228 selected pixels for PERSIANN-CDR, TRMM, and GPCP which are satellite-based and gauge adjusted datasets are more similar to the rain gauge data than other datasets. The results for the above datasets are even better than CRU and APHRODITE which are gauge-based datasets.
ConclusionThe results showed that the satellite estimates are not capable to show the precipitation (detection and amount) over the coast of Caspian Sea and the high areas of the Zagros Mountain as well as other parts of the country. There are some useful recommendations for data users at the end of this paper. In fact, in this paper our spatial focus is on Iran and we introduced a web address which data users can access freely from one of the most popular and widely used satellite-based products in easy-to-use format only for Iran. The results show considerable differences between the datasets. The difference is about 0.8 times of mean annual precipitation (about 300 mm in a year) for the coast of Caspian Sea. The satellite-based estimations were less accurate over the coast of Caspian Sea and high mountainous area of the southwest of Zagros comparing to other parts of the country. While spring precipitation shows maximum contributions in annul precipitation for in-situ datasets, winter precipitation shows maximum contribution in annual precipitation for other datasets. The results showed that areal average of monthly, seasonal and annual precipitation over 228 selected pixels for PERIANN-CDR, TRMM and GPCP were consistent with rain gauge data. CMORPH and PERSIANN underestimate areal average of monthly and seasonal precipitation over the pixels
Keywords: Evaluation, Iran, Remote Sensing, Precipitation Datasets, Satellite-based Precipitation -
برای مدیریت منابع آب در هر حوضه آبریز لازم است که تخمین مناسبی از میزان آب موجود در حوضه انجام شود که برای این کار از مدل سازی هیدرولوژیکی استفاده می شود. مدل سازی هیدرولوژیکی مناطق خشک و نیمه خشک به علت محدودیت منابع آبی وجود اهمیت بسزایی دارد. در این تحقیق به بررسی کلی مشکلات مدل سازی هیدرولوژیکی در این مناطق پرداخته شده و به طور خاص روی مولفه بارش موثر تمرکز شده است. سپس، یک روش برای محاسبه باران موثر و آستانه بارش-رواناب پیشنهاد شده و تاثیر آن در جریان هورتونی منطقه مورد بررسی قرار گرفته است. برای مدل سازی بارش-رواناب از مدل هیدرولوژیکی توزیعی BTOPMC استفاده شده است و عملکرد آن قبل و پس از اعمال رابطه باران موثر و جریان هورتونی اصلاح شده مقایسه شده است. از دو معیار ارزیابی ضریب نش و ضریب حجمی جریان برای بررسی عملکرد مدل استفاده شده است. نتایج حاصل از مدل سازی نشان می دهد که اعمال رابطه پیشنهادی در این تحقیق موجب افزایش حدود 12/0 در مقدار ضریب نش و ده درصد در ضریب حجمی جریان شده است که نشان دهنده تاثیر مطلوب اعمال این رابطه در مدل هیدرولوژیکی BTOPMC است و موجب تخمین مطلوب حجم آب در سطح حوضه می شود.کلید واژگان: مدل سازی هیدرولوژیکی, مناطق خشک و نیمه خشک, باران موثر, ضریب نشFor optimal management of water resources in a catchment it is important to estimate the amount of water within a catchment by hydrological modeling. Hydrological modeling is very crucial in arid and semi arid areas because of limited water resources in these areas. In this study, the problems of hydrological modeling in these areas have been investigated and particularly is focused on effective rainfall. Then, a method is proposed to calculate effective rainfall and hortonian flow in a catchment. A hydrological distributed model, BTOPMC, is utilized and its performance is compared before and after applying modified hortonian flow formulation. Nash-Sutcliffe and volume error are the criteria used to calculate the model performance. Results have shown that applying modified equation for hortonian flow in BTOPMC have improved Nash-Sutcliffe and volume error about 12% and 10%, respectively that reflects its favorable impact on estimation water amount in a catchment by using BTOPMC.Keywords: Hydrological modeling, Arid, semi arid areas, Effective rainfall, Nash, Sutcliffe coefficient
-
مدیریت کمی و کیفی منابع آب به منظور تامین نیازهای آبی برای کاربری های مختلف از رویکردهای مهم سیاست گذاری در هر کشور است. در این راستا پایش کیفیت آب مخازن سدها به عنوان یک گام اساسی در مدیریت این منابع با ارزش اهمیت ویژه ای دارد. کاهش هزینه های عملیات پایش و طراحی شبکه پایش که حداکثر اطلاعات از آن حاصل شود، از اهداف مشترک همه برنامه های پایش است. در این تحقیق سعی شده است با استفاده از مدل کیفی CE-QUAL-W2 نقاطی از مخزن سد کرخه که مقادیر شاخص های کیفی در طول زمان در آن ها تغییرات زیادی را نشان می دهد شناسایی شود. برای این منظور، کنترل تغذیه گرایی در مخزن سد به عنوان هدف عملیات پایش در نظر گرفته شد و با توجه به اینکه چهار پارامتر اورتوفسفات، نیترات، کلروفیلa و اکسیژن محلول تاثیر زیادی در ایجاد بستر مناسب برای رشد ماکروفیت ها، جلبک ها و انواع علف های هرز آبی دارند، این چهار شاخص مورد مطالعه قرار گرفتند. با استفاده از مقادیر اندازه گیری شده شاخص های مورد مطالعه در یک دوره چهارده ماهه از اردیبهشت ماه 1384 تا تیرماه 1385 مدل پیش بینی کیفیت دوبعدی CE-QUAL-W2 کالیبره و واسنجی شد و با استفاده از سری زمانی شاخص های کیفی در سلولهای مدل، مقادیر واریانس زمانی محاسبه شده و نقاطی که دارای واریانس زمانی حداکثر می باشند به عنوان نقاط بحرانی از نظر پایش کیفیت معرفی شدند. نتایج بدست آمده بیانگر کارایی متدولوژی پیشنهادی در تعیین نقاط بحرانی به منظور پایش کیفی مخازن سدها می باشد.
کلید واژگان: پایش کیفیت آب, مدل کیفی CE, QUAL, W2, تغذیه گرایی, واریانس زمانیPreservation and optimal usage of water resources are that main aspects of sustainable development in each country. Knowing qualitative and quantitative problems in water resources monitoring systems is one of the most important steps in water resources system management and pollution reduction plan. Recent studies in the field of water quality monitoring network has showen the needs for more researches, despite the abilities and investments in this field. One of the most important problems is the difference between required data and provided data in monitoring networks. So, monitoring systems should be revised and modified in several cases. High monitoring expenses necessitates optimizing monitoring systems to prevent cost loss. Being aware of network properties is an essential step in evaluating existing quality monitoring network. Locations of sampling stations, time frequencies, qualitative variables specifications and sampling duration should be considered in these evaluations.Reduce the cost of monitoring networks and maximize the obtained information, is the common objectives of the monitoring networks planning. From a monitoring perspective, identification of the reservoir eutrophication situation is of particular importance. Eutrophication phenomenon affects water quality strongly and causes serious limitations on the water utilization ability. Autotrophic organisms and algae overgrowth increased turbidity, toxic substances, increased sedimentation rate, oxygen concentration in the middle of the day and reduced severely by decreasing sunlight from sunset until next day morning, which causes anaerobic regions creation in deeper areas of the reservoir as the result.In this study, locations of Karkheh dam reservoir that there was maximum variations in quality indices values using CE-QUAL-W2 model, was identified. PO_4, NO_3, chlorophyll A and dissolved oxygen was studied to eutrophication control in reservoir. Because of limited available data from the time frequencies and sampling location point of view, dam reservoir was modeled by CE-QUAL-W2, 2D qualitative model for a period of one year. Using time series developed in previous step in model cells, time variance of studied parameters in the entire model cells was calculated and was used as a measure of its value change during time. Critical path from monitoring point of view was obtained after fitting best curve to cells with maximum time variance for studied qualitative indices. Placement of monitoring stations on this route will get the maximum information about the quality of the monitoring operation. The results showed that the proposed methodology is efficient in determination of critical paths for quality indices from monitoring perspective, in the dam reservoirs. ...Being aware of network properties is an essential step in evaluating existing quality monitoring network. Locations of sampling stations, time frequencies, qualitative variables specifications and sampling duration should be considered in these evaluations.Reduce the cost of monitoring networks and maximize the obtained information, is the common objectives of the monitoring networks planning. From a monitoring perspective, identification of the reservoir eutrophication situation is of particular importance. Eutrophication phenomenon affects waterKeywords: Water Quality Monitoring, CE, QUAL, W2 model, Eutrophication, Time Variance
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.