فردین رحمانی ننه کران
-
مقدمه
سامانه بارشی در بخش عمده ای از سرزمین ایران، از نوع مدیترانه ای است که در آن میزان ریزش های جوی در دوره رویش گیاهان کم است. علاوه بر این، وقوع بارش در دوره غیررویشی و یا اوایل دوره رویشی که گیاهان هنوز سطح زمین را به خوبی نپوشانده اند، از دلایل مهم فرسایش آبی در ایران است. از آنجایی که پوشش گیاهی نقش ویژه ای در مهار فرسایش خاک و نگهداشت رواناب دارد، هرگونه تغییر در ساختار و الگوی آن که بیان گر الگو و عملکرد سیمای سرزمین است، می تواند اثر قابل توجهی در تغییر فرایندهای هیدرولوژیکی داشته باشد. لذا، ارزیابی از هدررفت آب و خاک و کمی سازی ارتباط آن با سنجه های سیمای سرزمین، اطلاعات کلیدی به منظور توسعه راهبردهای مدیریتی کیفیت آب و خاک فراهم می کند.
مواد و روش هاپژوهش حاضر با هدف بررسی تغییرات مولفه های هیدرولوژیکی در ارتباط با سنجه های سیمای سرزمین در مقیاس کرت های صحرایی دو متر مربعی و با استفاده از باران شبیه سازی شده در شدت 32 میلی متر بر ساعت، در بخشی از مراتع شهرستان اردبیل انجام شد. در ابتدا، با در نظر گرفتن نوع و درصد پوشش گیاهی به عنوان متغیر اصلی، هشت گروه از ترکیب پوشش گیاهی به همراه یک گروه بدون پوشش گیاهی (شاهد) با سه تکرار در نظر گرفته شد. ترکیب و درصد پوشش گیاهی از گروه اول تا هشتم به ترتیب شامل غالبیت گرامینه با ارتفاع کم (45)، ترکیب بوته ای متراکم با گرامینه (43)، بوته ای با ارتفاع کم و پراکنش متوسط (37)، بوته ای پراکنده با ارتفاع عمدتا کم و متوسط (31)، ترکیب بوته ای پراکنده با گرامینه (56)، بوته ای متراکم در بالادست (54)، بوته ای با ارتفاع کم و پراکنش بسیار کم (15) و بوته ای متراکم با پوشش تقریبا یکنواخت (56) بوده است. پس از اندازه گیری رواناب و رسوب در خروجی کرت ها، مولفه های هیدرولوژیکی مختلف محاسبه شدند. سپس، کرت های دارای نه ترکیب مختلف از پوشش گیاهی در سه تکرار قبل و پس از شبیه سازی باران، تصویر برداری شدند. پس از انتقال تصاویر تهیه شده از کرت ها به محیط Arc/Map 10.8، نه سنجه مهم سیمای سرزمین محاسبه شد.
نتایج و بحث:
تغییرات میانگین سنجه های تراکم لکه (26.90-4.43)، شاخص بزرگ ترین لکه (86.75-54.16)، تراکم حاشیه (107.38-17.12)، شاخص شکل سیمای سرزمین (4.47-1.50)، میانگین اندازه لکه (37.46-4.16)، میانگین فاصله نزدیک ترین همسایه اقلیدسی (1.65-0.00)، شاخص گسستگی سیما (2.31-0.19)، میانگین شاخص شکل لکه (22.85-1.24) و اندازه شبکه تاثیرگذار (43.96-15.80)، نشان دهنده تاثیرپذیری متفاوت آن ها از درصد و ترکیب مختلف پوشش گیاهی بوده است. تحلیل ماتریس همبستگی اسپیرمن، ارتباط غیرمعنی داری (r<0.26 و p-value>0.10) بین مقادیر میانگین هدررفت خاک، حجم رواناب، ضریب رواناب و غلظت رسوب با سنجه های سیمای سرزمین نشان داد. کوچک بودن مقیاس کرت های مورد بررسی، عدم تنوع زیاد در ترکیب پوشش گیاهی و یکنواختی از نظر ارتفاع پوشش گیاهی را می توان از دلایل عدم همبستگی ذکر کرد. در حالت کلی، گروه هایی که مقادیر پوشش گیاهی بالای 50 درصد داشتند، از وضعیت بهتری از نظر LPI، AREA_MN و MESH برخوردار بودند که نشان دهنده پیوستگی بیشتر و تخریب کمتر است. افزایش پوشش گیاهی و ناهمگنی مکانی بالای سیمای سرزمین می تواند مسیر انتقال رسوب را تغییر داده، اتصال رسوب را کاهش داده است و منجر به کاهش رسوبگذاری شود.
نتیجه گیرینتایج به دست آمده، در تبیین مرجع مناسب به منظور بهینه سازی اقدامات حفاظت آب و خاک در مقیاس حوزه آبخیز کاربرد دارند. هر چند، پیشنهاد می شود که پژوهش های مشابه و جامع تر در مقیاس های مختلف از کرت های فرسایشی و نیز حتی در مقیاس دامنه صورت بگیرد تا با در نظر گرفتن طیف وسیعی از شرایط پوشش گیاهی، توپوگرافی، اقلیمی و نیز رگبارهای متوالی، امکان مقایسه نتایج، انتخاب بهینه مقیاس مطالعاتی و در نهایت، برنامه ریزی به منظور مدیریت و حفاظت از پوشش گیاهی و منابع آب و خاک، فراهم شود.
کلید واژگان: بررسی میدانی, پوشش مرتعی, تغییرپذیری مکانی, ضریب رواناب, هدررفت خاکIntroductionThe rainfall system of a major part of Iran is mediterranean, where the precipitation amount during the vegetation period is low. In addition, the occurrence of precipitation in the non-vegetation period or beginning of the vegetation period, which does not cover the surface of the earth well, is one of the important reasons for water erosion in Iran. Since vegetation has a special role in soil erosion control and runoff retention, any change in the vegetation structure and pattern, which expresses the landscape pattern and function, can have a significant effect on changing hydrological processes. Therefore, the assessment of soil and water loss and the quantification of its relationship with landscape metrics provide key information for the development of water and soil quality management strategies.
Materials and methodsThe current research was conducted to investigate the hydrological component changes with landscape metrics on 2 m2 plots using simulated rainfall at an intensity of 32 mm.h-1 in a part of rangelands of Ardabil County. At first, considering the type and percentage of vegetation as the main variable, eight groups of vegetation composition along with one group without vegetation (control) were considered with three replications. The composition (and percentage) of the vegetation from the first to the eighth groups, respectively, include low-height graminea predominance (45), the composition of dense bushes with graminea (43), bushes with low-height and medium-distribution (37), sparse bushes mostly with low and medium height (31), the composition of sparse bushes with graminea (56), dense bushes in upper parts (54), low-height bushes with very low distribution (15), and dense bushes with almost uniform distribution (56). After measuring the runoff and sediment at the plot outlets, different hydrological components were calculated. Then, plots with nine different vegetation combinations were imaged in three replicates before and after rainfall simulation. After transferring the images prepared from the plots to the Arc/Map10.8 environment, nine important landscape metrics were calculated.
Results and discussionChanges in the mean patch density (4.43-26.90), largest patch index (54.16-86.75), edge density (17.12-107.38), landscape shape index (1.50-4.47), mean shape area (4.16-37.46), mean Euclidean nearest neighbor distance (0.00-1.65), landscape division index (0.19-2.31), mean patch shape index (1.24-22.85), and the effective mesh size (15.80-43.96) indicate their different influence from different percentage and composition of vegetation cover. Spearman's correlation matrix analysis showed a nonsignificant relationship between the mean soil loss, runoff volume, runoff coefficient, and sediment concentration with landscape metrics (r<0.26 and p-value>0.10). The small scale of the studied plots, the lack of diversity in the vegetation composition, and the uniformity in terms of vegetation height can be cited as the reasons for the lack of correlation. In general, groups with vegetation values above 50% had a better condition in terms of LPI, AREA_MN, and MESH, which indicates more connectivity and less degradation. The increase in vegetation cover and spatial heterogeneity above the landscape surface can change the path of sediment transport, reduce sediment connectivity, and lead to a decrease in sedimentation.
ConclusionThe obtained results are applicable in explaining the appropriate reference to optimize water and soil protection measures on the watershed scale. However, It is suggested that similar and more comprehensive research be done in different scales of erosion plots and even in the landscape (slope) scale so that by considering a wide range of vegetation, topography, climatic conditions, as well as successive rains, it is possible to compare the results, optimum selection of study scale, and finally planning to manage and protect vegetation and water and soil resources.
Keywords: Field survey, Rangeland cover, Runoff coefficient, Soil loss, Spatial Variability -
تحقیق حاضر با هدف بررسی اثر 9 تیمار از ترکیب های مختلف پوشش گیاهی شامل غالبیت گرامینه با ارتفاع کم (T1)، ترکیب بوته ای متراکم با گرامینه (T2)، بوته ای با ارتفاع کم و پراکنش متوسط (T3)، بوته ای پراکنده با ارتفاع عمدتا کم و متوسط (T4)، ترکیب بوته ای پراکنده با گرامینه (T5)، بوته ای متراکم در بالادست (T6)، بوته ای با ارتفاع کم و پراکنش بسیار کم (T7)، بوته ای متراکم با پوشش تقریبا یکنواخت (T8) و بدون پوشش گیاهی (شاهد) (T9) بر مولفه های رواناب و رسوب انجام شد. علاوه بر این، اثر درصدهای مختلف (صفر، <40 و 60-40) پوشش گیاهی بر تغییرات مولفه های رواناب و رسوب نیز بررسی شد. تیمارهای مطالعاتی با سه تکرار در قالب طرح بلوک های کاملا تصادفی و در کرت های صحرایی به ابعاد 2×1 متر و شیب تقریبی 15-12 درصد، در بارندگی با شدت 32 میلی متر بر ساعت با تداوم زمانی 18 دقیقه بررسی شد. نتایج تحقیق حاضر نشان داد که اثر ترکیب های مختلف پوشش گیاهی بر مولفه های رواناب و رسوب، معنی دار (0001/0>p-value) بود؛ به طوری که حداکثر زمان شروع رواناب (33/1388 ثانیه) در تیمار T4 و حداقل میزان رواناب (41/0 لیتر) و ضریب رواناب (14/2 درصد) در تیمار T2 به ترتیب با 98+، 82- و 82- درصد تغییر نسبت به تیمار شاهد به دست آمد. همچنین حداقل هدررفت خاک برابر با 30/1 گرم، در تیمار T2 و حداقل غلظت رسوب برابر با 6 گرم بر لیتر، در تیمار T8 به ترتیب با 86- و 69- درصد تغییر نسبت به تیمار شاهد بود. تجزیه و تحلیل آماری مربوط به اثر درصدهای مختلف پوشش گیاهی نیز نشان داد که بین میانگین زمان شروع رواناب و غلظت رسوب (001/0>p-value)، اختلاف معنی دار و بین میانگین مقدار و ضریب رواناب (73/0<p-value) و هدررفت خاک (15/0<p-value)، اختلاف غیرمعنی دار وجود دارد.
کلید واژگان: تولید رسوب, حفاظت خاک, رواناب, شبیه ساز باران, مدیریت پوشش گیاهیIntroductionToday, the increasing population and, consequently, the demand for agricultural products have caused the natural cover of land, especially forests and pastures to be destroyed by humans at an alarming rate to become agricultural land; even in many areas due to lack of water and nutrients, vegetation growth is limited. Declining vegetation worldwide due to human activities such as overgrazing and deforestation reduces permeability and consequently increases runoff and can reduce soil particle adhesion and predisposes fertile soil particles to erosion. Soil erosion in managed ecosystems such as crops, pastures, or forests, as well as in natural ecosystems leads to extensive damage. It also reduces the infiltration capacity due to runoff and reduces soil organic matter and thus valuable soil nutrients. At the same time, it significantly reduces the diversity of plant and animal species. To this end, controlling soil erosion is one of the most important goals in water conservation and management programs. Vegetation can be a very important tool to control water erosion and regenerate the ecosystem. Vegetation reduces the shear stress by increasing the roughness and decreasing the water flow velocity, and the hydraulic resistance created by the vegetation causes the absorption and deposition of suspended sediments. Vegetation and its associated factors on a long-term scale also play an important role in modifying the hydrological properties and soil erodibility and sediment load. The role of vegetation in reducing runoff and soil erosion in different studies has been proven. However, the effects of different vegetation compositions have not been studied extensively in runoff and soil erosion control. Accordingly, the present study was planned to investigate the effect of different compositions of graminea and bushes with different coverage percentages on runoff and sediment components.
MethodologyThe study area is part of the natural rangelands located in the surroundings of the University of Mohaghegh Ardabili, Ardabil, NW of Iran. A total of nine treatments from different vegetation compositions including low-height graminea predominance (T1), the composition of dense bushes with graminea (T2), bushes with low-height and medium-distribution (T3), sparse bushes mostly with low and medium height (T4), the composition of sparse bushes with graminea (T5), dense bushes in upper parts (T6), low-height bushes with very low distribution (T7), dense bushes with almost uniform distribution (T8), and no vegetation cover (control) (T9) were selected. In addition, the effect of different percentages (zero, <40, and 40-60) of vegetation on changes in runoff and sediment components was investigated. It should be noted that the vegetation in the control plots was removed at the soil surface in the desired plots as much as possible. Considering that, 27 field plots surrounded by galvanized sheets with an area of 2 m2 with a slope of 12-15% were installed. Study treatments with three replications were designed in a completely randomized block with help of field plots with dimensions of 2*1 m and an approximate slope of 12-15%. This study was performed using a rainfall simulator with an intensity of 32 mm h-1 and a duration of 18 min. The plots were placed in a rectangular in the direction of the slope, using 15 cm high metal sheets, five cm of which were sunk into the soil so that the generated runoff did not seep out of the plots. Totally, five components including time to runoff, runoff volume, runoff coefficient, soil loss, and sediment concentration were measured for each plot.
Results
The results showed that the effect of different vegetation compositions on runoff and sediment components was significant (p-value <0.0001). The maximum time to runoff (1388.33 seconds) in treatment T4 and the minimum runoff (0.41 L) and runoff coefficient (2.14%) in treatment T2, respectively with +98, -82, and -82 % change compared to the control treatment has been obtained. In addition, the minimum soil loss was equal to 1.30 g in treatment T2 and the minimum sediment concentration was equal to 6 g l-1 in treatment T8 with -86 and -69% change compared to the control treatment, respectively. Statistical analysis of the effect of different vegetation percent also showed that there was a significant difference between the mean time to runoff and sediment concentration (p-value<0.001) and a non-significant difference between the mean runoff amount and coefficient (p- value<0.73), and soil loss (p-value<0.15). In general, treatments with less than 40% vegetation were more effective in controlling runoff components and treatments with vegetation between 40 to 60% were more effective in controlling sediment components.Discussion & ConclusionsThe runoff threshold in different compositions and percentages of vegetation has a significant difference compared to the control treatment. Vegetation in both groups of <40 and 40-60% by delaying the formation of runoff has increased water permeability in the soil. Low-height graminea predominance (T1) treatment, the composition of dense bushes with graminea (T2), bushes with low-height and medium-distribution (T3), and sparse bushes mostly with low and medium height (T4) had the maximum effects (more than 80%) in increasing time to runoff. Although the treatment of the composition of sparse bushes with graminea (T5) was not effective in increasing the runoff threshold and reducing the amount and coefficient of runoff, it reduced the soil loss and sediment concentration by 21 and 57%, respectively, compared to the control treatment. Therefore, it can be concluded that if this type of erosion management strategy is adopted, this type of composition can also be considered. While it is not a suitable management option for runoff and flood control, treatments T4, T3, T2, and T1 should be used effectively. In addition, treatments with <40% vegetation cover had better performance compared to treatments with 40-60% vegetation in improving runoff components; nevertheless, 40-60% of vegetation with a slight difference has played a better role in improving erosion and sediment components. Previous research has confirmed that soil loss processes due to water erosion are closely related to the runoff process. Compared to runoff reduction, vegetation treatments have provided better benefits in reducing erosion and sedimentation. For future studies, the morphological effects of vegetation types on the hydrological and hydraulic properties of degraded soils could be investigated.
Keywords: Rainfall simulator, Runoff, Sediment yield, Soil conservation, Vegetation management
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.