به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

منور محمدکریمی

  • فاطمه حسینی، امید کریمی، منور محمدکریمی
    برای مدلبندی پاسخ های گسسته فضایی زمین آمار از مدل های آمیخته خطی تعمیم یافته فضایی استفاده می شود و ساختار همبستگی فضایی داده ها از طریق متغیرهای پنهان در نظر گرفته می شود. از مهمترین اهداف در بررسی این مدل ها پیش گویی متغیرهای پنهان و برآورد پارامترهای مدل است. در این مقاله برای تحلیل این مدل ها، ابتدا یک روش پیش گویی ارائه و سپس به بیان رهیافت بیزی و الگوریتم های مونت کارلویی پرداخته می شود. به دلیل پیچیدگی این مدل ها و استفاده از نمونه های مونت کارلویی در تحلیل بیزی، زمان محاسبات بسیار طولانی است. برای رفع این مشکل روش بیزی تقریبی با استفاده از تقریب لاپلاس آشیانی جمع بسته بررسی می شود. در نهایت یک مجموعه داده واقعی مربوط به تعداد روزهای دارای بارندگی استان سمنان در سال 1391، مشاهده شده در ایستگاه های هواشناسی این استان با مدل و روش های معرفی شده مورد مطالعه قرار می گیرد.
    کلیدواژگان مدل آمیخته خطی تعمیم یافته فضایی؛ الگوریتم های مونت کارلویی؛ رهیافت بیز تقریبی
    Fatemeh Hosseini, Omid Karimi, Monavar Mohammad Karimi
    Spatial generalized linear mixed models are used for modeling geostatistical discrete spatial responses and spatial correlation of the data is considered via latent variables. The most important interest in these models is estimation of the model parameters and the prediction of the latent variables. In this paper، first a prediction method is presented and then، Bayesian approach and MCMC algorithms are intrpretation. Since these models are complex and in the Bayes inference of these models، are used Monte Carlo sampling، computation time is long. The Approximatin Baysian methods are considered for solving this problem. Finally، the proposed methods are applied to a case study on rainfall data observed in the weather stations of Semnan in 1391.
    Keywords: Spatial generalized linear mixed model, Monte Carlo algorthms, Approximation Baysian approach
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال