به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

مقالات رزومه دکتر سعید باقری

  • مهدی ابراهیمی درچه، سعید باقری
    Mehdi Ebrahimi Dorcheh, Saeid Bagheri *

    ‎Let $R$ be an associative ring with identity‎. ‎In this paper we‎‎associate to every $R$-module $M$ a simple graph $\Gamma_e(M)$‎, which we call it the essentiality graph of $M$. The vertices of $\Gamma_e(M)$ are nonzero submodules of $M$ and two distinct‎‎vertices $K$ and $L$ are considered to be adjacent if and only‎‎if $K\cap L$ is an essential submodule of $K+L$‎.‎‎We investigate the relationship between some module theoretic‎‎properties of $M$ such as minimality and closedness of‎‎submodules with some graph theoretic properties of‎‎$\Gamma_e(M)$‎. ‎In general‎, ‎this graph is not connected‎. ‎We‎‎study some special cases in which $\Gamma_e(M)$ is‎‎complete or a union of complete connected components and give some examples illustrating each specific case‎.

    Keywords: essential submodules, closed submodules, UC-module, Clique number, girth}
  • سعید باقری*، مهتاب کوهی کرهرودی

    در این مقاله برای مشبکه ی توزیع پذیرL ،برخی ویژگی های مشبکه ایLو خواص توپولوژی فضاهای استون (L(Spec و (L(Max را مطالعه کرده و با جنبه های نظریه ی گرافی متناظر از گراف مقسوم علیه صفر (L(Γ مقایسه می کنیم. در این میان، نشان خواهیم داد که بعد گلدی مشبکه ی L با عدد سلولی فضای توپولوژیک (L(Spec مساوی است که این خود نیز با عدد خوشه ای گراف مقسوم علیه صفر (L(Γ برابر است. به علاوه، عدد غلبه ای گراف (L(Γ با چگالی و وزن فضای توپولوژیک (L(Spec مقایسه خواهد شد. برای هر مشبکه 0‐توزیع پذیر، مانندL ،زیرگراف صفر فشرده(L(ΓE ،از گراف مقسوم علیه صفر (L(Γ را بررسی کرده و برخی ویژگی های این زیرگراف را، برحسب برخی اجزای مشبکه L مانند ایدآل های اول وابسته ی آن، مشخص می کنیم.

    Saeid Bagheri *, Mahtab Koohi Kerahroodi

    In this paper, for a distributive lattice L, we study and compare some lattice theoretic features of L and topological properties of the Stone spaces Spec(L) and Max(L) with the corresponding graph theoretical aspects of the zero-divisor graph Γ(L). Among other things, we show that the Goldie dimension of L is equal to the cellularity of the topological space Spec(L) which is also equal to the clique number of the zero-divisor graph Γ(L). Moreover, the domination number of Γ(L) will be compared with the density and the weight of the topological space Spec(L). For a 0-distributive lattice L, we investigate the compressed subgraph ΓE(L) of the zero-divisor graph Γ(L) and determine some properties of this subgraph in terms of some lattice theoretic objects such as associated prime ideals of L.

    Keywords: Distributive lattice, Goldie dimension, compressed zero-divisor graph, domination number}
  • سعید باقری*

    فرض کنید H یک جبر شبه-هوپف روی حلقه جابه جایی k و A یک جبر هم-مدولی روی H باشد. در این مقاله  نشان می دهیم که گرچه رسته دو-مدول ها، AMA، لزوما یک رسته تکواره ای  نیست، با این وجود هم-عمل عمل رسته HMH روی  AMAرا باعث شده و از این رهگذر نسخه های مناسبی از خود-تابعگون های تانسور و Hom از رسته  AMAرا معرفی کرده و الحاقی بین این خود-تابعگون ها را توصیف می کنیم. هم چنین یکه ها و هم-یکه های وابسته به آنها را صریحا محاسبه می کنیم.

    کلید واژگان: جبر (شبه-) هوپف, جبر هم- مدولی, رسته تکواره ای, عمل یک رسته تکواره ای}
    Saeid Bagheri*

    Introduction:

     Over a commutative ring k, it is well known from the classical module theory that the tensor-endofunctor of is left adjoint to the Hom-endofunctor. The unit and counit of this adjunction is obtained trivially. For a k-bialgebra (H, 𝝻, 𝝸, 𝞓, 𝞮) the category of (H,H)-bimodules is a monoidal category: the tensor product Mof  two arbitrary (H,H)-bimodules M and N is again an (H,H)-bimodule in which the bimodule structure of  M is defined diagonally using the comultiplication. The associativity constraint of this category is formally trivial as in the category  and it is followed from the coassociativity of the comultiplication. An antipode is an algebra anti-homomorphism S;H→H which is the inverse of with respect to the convolution product in . A Hopf algebra is a bialgebra together with an antipode. As generalizations of the concepts bialgebra and Hopf algebra, V. G. Drinfeld introduced the concepts quasi-bialgebra and quasi-Hopf algebra respectively. A quasi-bialgebra over a commutative ring k is an associative algebra H with unit together with a comultiplication: HH and a counit: Hk satisfying all axioms of bialgebras except the coassociativity of 𝞓. However, the non-coassociativity of has been controlled by a normalized 3-cocycle 𝞍∊ H in such a way that the category  of (H,H)-bimodules is monoidal. In this case, the associativity constraint of the category is not the trivial one and it depends on the element 𝞍 ∊ H. However, we can yet consider tensor functors V and - as endofunctors of  . A quasi-antipode has been defined as a generalization of antipode. A quasi-Hopf algebra is a quasi-bialgebra together with a quasi-antipode (S,α,β). Let (H,𝝻,𝝸,𝞓,𝞮,S,α,β) be a quasi-Hopf algebra with a bijective quasi-antipode S. Then it has been shown that the tensor endofunctors V and - of  have right adjoints which are described in terms of Hom-functors. This means that is a biclosed monoidal category. Over a Hopf algebra H, the category of left H-comodules is monoidal and algebras and coalgebras can be defined inside this category. In this way, a left H-comdule algebra is defined as an algebra in the monoidal category of left H-comodules. However, if H is a quasi-bialgebra or even a quasi-Hopf algebra, because of non-coassociativity of comultiplication, we can not define an H-comodule algebra in this categorical language. To solve this problem, F. Hausser and F. Nill defined an H-comodule algebra in a formal way as a generalization of the quasi-bialgebra H and they considered some categories related to an H-comodule algebra such as the category of two-sided Hopf modules. In this article, the bimodule category  of a comodule algebra A over a quasi-Hopf algebra H is considered which is not necessarily monoidal. However, we define varieties of Tensor and Hom-endofunctors of this category and state Hom-tensor adjunctions between suitable pairs of these functors. In each case, we compute the unit and counit of adjunction explicitly.

    Material and methods:

     First we consider the category of left B-modules, where B is a left comodule algebra over a quasi-Hopf algebra H and we note that the left action of on yields some varieties of Tensor and Hom-endofunctors of  and we observe that every Tensor functor defined in this way has a right adjoint which is described as a Hom-functor. Next we extend this idea for the bimodule category.

    Results and discussion:

     First we note that although bimodule category of a comodule algebra A over a quasi-Hopf algebra H is not monoidal, the coaction of H on A yields an action of the bimodule category  (which is monoidal) on this bimodule category. This action, in turn, allows us to define Tensor and Hom-functors as endofunctors of the bimodule category. In any case we obtain Tensor and Hom-endofunctors with the bimodule structure defined diagonally using the coation of H on A and the quasi-antipode (S,α, β) of H. After that we state Hom-Tensor adjunction between corresponding pairs of Hom and Tensor endofunctors. The units and counits of adjunctions are not trivial as in the Hopf algebra case and they strongly depend on the invariants of the comodule algebra A and the quasi-antipode (S,α, β).

    Conclusion :

    The following conclusions were drawn from this research. Let H be a quasi-Hopf algebra with the quasi-antipod (S,α,β), (B,𝝀, a left H-comodule algebra and V be an (H,H)-bimodule. Then the pair is an adjoint pair of endofuntors with unit and counit given by where and are elements in H⊗B whose components are given in terms of quasi-antipode (S,α, β) and components of . Let H be a quasi-Hopf algebra with quasi-antipod (S,α,β), (A,ρ, a right H-comodule algebra and V be an (H,H)-bimodule. Then the pair is an adjoint pair of endofuntors with unit and counit given by where and are elements in A⊗H whose components are given in terms of quasi-antipode (S,α, β) and components of .

    Keywords: (quasi-) Hopf algebra, Comodule algebra, Monoidal category, Action of monoidal category}
  • Saeid Bagheri *, Mahtab Koohi Kerahroodi
    ýýIn this articleý, ýfor a lattice Lý, ýwe define and investigateý ýthe annihilator graph ag(L) of L which contains the zero-divisor graph of L as a subgraphý. ýAlsoý, ýfor a 0-distributive lattice Lý, ýwe study some properties of this graph such as regularityý, ýconnectednessý, ýthe diameterý, ýthe girth and its domination numberý. ýMoreoverý, ýfor a distributive lattice L with Z(L)≠{0}ý, ýwe show that ag(L)=Γ(L) if and only if L has exactly two minimal prime idealsý. ýAmong other thingsý, ýwe consider the annihilator graph ag(L) of the lattice L=(D(n),|) containing all positive divisors of a non-prime natural number n and we compute some invariants such as the domination numberý, ýthe clique number and the chromatic number of this graphý. ýAlsoý, ýfor this lattice we investigate some special cases in which ag(D(n)) or Γ(D(n)) are planarý, ýEulerian or Hamiltonian.
    Keywords: ??Distributive lattice, Annihilator graph, Zero-divisor graph}
فهرست مطالب این نویسنده: 4 عنوان
  • دکتر سعید باقری
    باقری، سعید
    استادیار گروه ریاضی، دانشکده علوم ریاضی، دانشگاه ملایر
بدانید!
  • این فهرست شامل مطالبی از ایشان است که در سایت مگیران نمایه شده و توسط نویسنده تایید شده‌است.
  • مگیران تنها مقالات مجلات ایرانی عضو خود را نمایه می‌کند. بدیهی است مقالات منتشر شده نگارنده/پژوهشگر در مجلات خارجی، همایش‌ها و مجلاتی که با مگیران همکاری ندارند در این فهرست نیامده‌است.
  • اسامی نویسندگان همکار در صورت عضویت در مگیران و تایید مقالات نمایش داده می شود.
درخواست پشتیبانی - گزارش اشکال