a. torkaman
-
Today, with the proliferation of complex networks and their large amounts of data, researchers have great concerns about the accurate community detection methods. The difficulty in analyzing these networks stems from their enormous size and the complex relationships among the members of the networks. It is difficult to analyze the deep relationships and mechanisms by just looking at the whole. Traditional methods have some problems and limitations when analyzing these networks such as feature extraction, high reliance on the initial phase settings, computational complexity, neglect of network relationships and content. From the perspective of relationships and interactions between individuals, the environment of complex networks can be compared to a game in which nodes acting as players or agents may join or leave a community based on similar structural or semantic characteristics. Consequently, there is a strong tendency to use cooperative and non-cooperative games to detect communities. Moreover, the amalgamation of deep learning techniques and game theory has recently been proven to be highly effective in extracting communities. Deep learning techniques have demonstrated enhanced capability in feature engineering and automate the process. In this study, the authors make effort to detect rational and accurate communities based on structural and content features with the help of traditional approaches, deep learning, as well as cooperative and non-cooperative games. The efficiency of this study is demonstrated by experimental findings on real datasets, and confirming that it is able enough to identify those communities that are more meaningful.
Keywords: Complex Networks Community Detection Deep Learning Cooperative Game Non, Cooperative Game -
Recently, network representation has attracted many research works mostly concentrating on representing of nodes in a dense low-dimensional vector. There exist some network embedding methods focusing only on the node structure and some others considering the content information within the nodes. In this paper, we propose HDNR; a hybrid deep network representation model, which uses a triplet deep neural network architecture that considers both the node structure and content information for network representation. In addition, the author's writing style is also considered as a significant feature in the node content information. Inspired by the application of deep learning in natural language processing, our model utilizes a deep random walk method to exploit inter-node structures and two deep sequence prediction methods to extract nodes' content information. The embedding vectors generated in this manner were shown to have the ability of boosting each other for learning optimal node representation, detecting more informative features and ultimately a better community detection. The experimental results confirm the effectiveness of this model for network representation compared to other baseline methods.
Keywords: Community Detection, deep learning, citation network -
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.