به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب alireza vafaeinezhad

  • اثر بهینه سازی کرنل در مدلسازی پدیده خشکسالی با بهره گیری از هوش محاسباتی (مطالعه موردی: شهر سنندج)
    جهانبخش محمدی، علیرضا وفایی نژاد*، سعید بهزادی، حسین آقامحمدی، امیرهومن حمصی

    خشک سالی یکی از مهم ترین بلایای طبیعی است که اثرات مخرب و زیان باری در زمینه های مختلف اقتصادی، اجتماعی و زیست محیطی به جای می گذارد. با توجه به رفتار تکرارشوندگی این پدیده، در صورت عدم اجرای راهکارهای مناسب، آثار مخرب آن تا سال ها پس از وقوع می تواند در منطقه باقی بماند. اکثر بحران های طبیعی از قبیل سیل، زلزله، طوفان و رانش زمین در دوره ای کوتاه ممکن است خسارات سنگین مالی و جانی به جامعه وارد کنند، اما خشک سالی ماهیت آرام و خزشی دارد و آثار مخرب آن به تدریج و در مدت طولانی تری ظاهر می شود. ازاین رو با مدل سازی خشک سالی می توان طرح هایی جهت آماده سازی در مقابل خشک سالی و کاهش خسارات ناشی از آن ارایه کرد. در این پژوهش از الگوریتم های هوش محاسباتی شبکه عصبی پرسپترون چندلایه (Multi-Layer Perceptron)، شبکه عصبی رگرسیونی تعمیم یافته (Generalized Regression Neural Network)، رگرسیون بردار پشتیبان با کرنل گوسین (Support Vector Regression) و رگرسیون بردار پشتیبان با کرنل پیشنهادی (Support Vector Regression New kernel) جهت مدل سازی خشک سالی با در نظر گرفتن شاخص استانداردشده بارش Standardized Precipitation Index) (استفاده شده است. نتایج مدل سازی ها در اغلب حالات بیانگر کارایی بهتر مدل پیشنهادی SVR_N نسبت به دیگر مدل ها بود که در SPI 48 ماهه بهترین دقت مدل سازی حاصل گردید و مقدار RMSE و R2 به ترتیب برابر 093/0 و 991/0 به دست آمد. همچنین مدل های GRNN، MLP و SVR به ترتیب بعد از SVR_N کارایی بهتری در مدل سازی از خود نشان دادند. نتایج این تحقیق بیانگر اهمیت انتخاب و بهینه سازی کرنل بر رفتار مدل سازی پدیده خشک سالی در مدل سازی به روش رگرسیون بردار پشتیبان است.

    کلید واژگان: هوش محاسباتی, شبکه عصبی, کرنل, رگرسیون بردار پشتیبان}
    The effect of kernel optimization in modeling drought phenomenon using computational intelligence (Case study: Sanandaj)
    Jahanbakhsh Mohammadi, Alireza Vafaeinezhad *, Saeed Behzadi, Hossein Aghamohammadi, Amirhooman Hemmasi

    Drought is one of the most important natural disasters with devastating and harmful effects in various economic, social, and environmental fields. Due to the repetitive behavior of this phenomenon, if the appropriate solutions are not implemented, its destructive effects can remain in the region for years after its occurrence. Most natural disasters, such as floods, earthquakes, hurricanes, and landslides in the short term, can cause severe financial and human damage to society, but droughts are slow-moving and creepy in nature, and their devastating effects appear gradually and over a longer period of time. Therefore, by modeling drought, it is possible to provide plans for drought preparation and reduce the damage caused by it. In this study, computational intelligence algorithms of Multi-Layer Perceptron neural network, Generalized Regression Neural Network, Support Vector Regression with support kernel, and Support Vector regression with the proposed kernel (Support Vector) Regression New kernel has been used to model the drought using the Standardized Precipitation Index. The modeling results, in most cases, showed better performance of the proposed SVR_N model than other models. The values of RMSE and R2 were 0.093 and 0.991, respectively, and the GRNN, MLP, and SVR models performed better in modeling after SVR_N, respectively. Modeling of drought phenomenon in modeling is supported by vector regression method.

    Keywords: Computational Intelligence, Neural network, Kernel, Support Vector Regression}
  • پیش بینی و مدل سازی خشک سالی به روش هیبریدی موجک و الگوریتم های شبکه عصبی
    جهانبخش محمدی، علیرضا وفایی نژاد*، سعید بهزادی، حسین آقامحمدی، امیر هومن حمصی

    پیشینه و هدف:

     بحران خشک سالی یک دوره خشک آب و هوایی است که در هر نقطه از جهان و با هر اقلیمی ممکن است رخ دهد. این بحران اگرچه به آرامی شروع می شود اما می تواند برای مدتی طولانی تاثیر جدی بر سلامت، محصولات کشاورزی، اقتصاد، انرژی و محیط زیست بگذارد. خشک سالی معیشت و سلامت انسان ها را به شدت تهدید می کند و خطر ابتلا به انواع بیماری ها را افزایش می دهد. ازاین رو مدل سازی و پیش بینی خشک سالی از موضوعات مهم و جدی در جوامع علمی است. درگذشته از مدل های ریاضی و آماری مانند روش رگرسیون ساده، خودرگرسیون گیری (AR)، میانگین متحرک (MA) و نیز ARIMA جهت مدل سازی خشک سالی استفاده می شد. در سال های اخیر استفاده از روش های یادگیری ماشین و هوش محاسباتی جهت مدل سازی و پیش بینی خشک سالی بسیار موردتوجه دانشمندان بوده است. ازجمله از الگوریتم های هوش محاسباتی که توسط دانشمندان جهت مدل سازی خشک سالی قبلا موردتوجه قرارگرفته است می توان به شبکه عصبی پرسپترون چندلایه، شبکه عصبی RBF، ماشین بردار پشتیبان، روش های فازی و فازی عصبی اشاره کرد. در این تحقیق هدف مدل سازی و پیش بینی خشک سالی با بهره گیری از سه الگوریتم شبکه عصبی شامل پرسپترون چندلایه، شبکه عصبی RBF و شبکه عصبی رگرسیون تعمیم یافته است. شاخص خشک سالی استفاده شده در این تحقیق شاخص استانداردشده بارش (SPI) است. در این تحقیق از تکنیک موجک در تلفیق با الگوریتم های شبکه عصبی مصنوعی جهت مدل سازی و پیش بینی خشک سالی در 10 ایستگاه سینوپتیک در کشور ایران (آبادان، بابلسر، بندرعباس، کرمان، مشهد، رشت، سقز، تهران، تبریز و زاهدان) در اقلیم های مختلف و با توزیع مکانی مناسب در کل کشور ایران استفاده شده است.

    مواد و روش ها :

    در این تحقیق در ابتدا با استفاده از داده های بارش ماهانه بین سال های 1961 تا 2017 شاخص خشک سالی SPI در مقیاس های زمانی 3، 6، 12، 18، 24 و 48 ماهه از طریق برنامه نویسی در محیط نرم افزار MATLAB پیاده سازی شد. نتایج این مرحله با استفاده از نرم افزارهای علمی موجود MDM و Drinc صحت سنجی شد. در ادامه با استفاده از زنجیره مارکوف به طراحی مدل های پیش بینی پرداخته شد. در این تحقیق درمجموع از شش مدل هوش محاسباتی شامل سه مدل منفرد شبکه عصبی پرسپترون چندلایه (MLP)، شبکه عصبی تابع پایه شعاعی (RBF) و شبکه عصبی رگرسیون تعمیم یافته (GRNN) و سه مدل ترکیبی (هیبریدی) موجک با این سه مدل به صورت (WMLP-WRBF-WGRNN) جهت مدل سازی و پیش بینی شاخص SPI در 10 ایستگاه این تحقیق استفاده شده است. در پیاده سازی تمامی این شش مدل از محیط برنامه نویسی نرم افزار MATLAB استفاده شده است. در این تحقیق ابتدا از چهار نوع موجک گسسته شامل دابیشز (Daubechies)، سیملت (Symlets)، کویفلت (Coiflets) و دوضلعی (Biorthogonal) استفاده شد، به دلیل عملکرد بهتر موجک دابیشز، از این نوع موجک در تحقیق به عنوان گزینه نهایی استفاده شد. در موجک دابیشز استفاده شده در بین مرتبه های 1 تا 45، مرتبه 3 بهترین عملکرد را در بین مقیاس های زمانی مختلف SPI از خود نشان داد، به همین دلیل از موجک دابیشز مرتبه 3 در تمامی مدل های ترکیبی این تحقیق استفاده شد. بعد از آموزش همه شش الگوریتم استفاده شده نتایج با معیارهای ارزیابی ضریب تعیین (R2) و جذر میانگین مربعات خطا (RMSE) جهت اندازه گیری اختلاف بین مقادیر واقعی و برآورد شده استفاده شده است.

    نتایج و بحث :

    نتایج این تحقیق نشان داد که روش های هوش محاسباتی دقت بالایی در مدل سازی و پیش بینی شاخص خشک سالی SPI دارند. در مرحله اول نتایج نشان داد که مدل های منفرد MLP، RBF و GRNN درصورتی که به طور صحیح آموزش داده شوند نتایجی نزدیک به هم در مدل سازی و پیش بینی شاخص خشک سالی SPI دارند. در مرحله بعد مشاهده شد که تکنیک موجک باعث بهبود نتایج مدل سازی خواهد شد. در استفاده از تکنیک موجک در تلفیق با سه مدل منفرد MLP، RBF و GRNN انتخاب نوع موجک نیز در مدل سازی بهتر موثر است، به نحوی که در این تحقیق ابتدا از چهار نوع موجک گسسته دابیشز، سیملت، کویفلت و دوضلعی در تلفیق با سه مدل منفرد این تحقیق استفاده شد که نتایج این چهار نوع موجک نشان از برتری نسبی موجک دابیشز نسبت به سه موجک دیگر بود. در استفاده از موجک دابیشز نیز از آنجایی این موجک 45 مرتبه دارد و انتخاب مرتبه نیز در مدل سازی موثر بود با آزمایش 45 مرتبه موجک مشاهده شد که موجک مرتبه 3 در حالت کلی دارای دقت بالاتری در تمامی مقیاس های زمانی شاخص SPI (3، 6، 12، 18، 24 و 48 ماهه) و نیز در هر سه الگوریتم MLP، RBF و GRNN دارد. ازاین رو در این تحقیق از موجک مرتبه سوم دابیشز در هر سه الگوریتم این تحقیق و نیز در همه مقیاس های زمانی استفاده شد. نتایج تحقیق نشان داد که تلفیق تکنیک موجک با هر سه مدل MLP، RBF و GRNN باعث بهبود نتایج خواهد شد. نمودارهای تحقیق نشان داد که برای مقیاس زمانی سه ماهه مقادیر به دست آمده از پیش بینی مدل منفرد در مدل سازی MLP و RBF تا حدودی دارای اختلاف فاز یک ماهه نسبت به مدل هیبریدی هست، درحالی که در مدل GRNN این اختلاف پیش بینی کم هست. نتایج مدل سازی برای هر دو حالت مدل سازی منفرد و هیبریدی بیانگر عدم وجود اختلاف فاز بین دو روش مدل سازی منفرد و هیبریدی درمقیاس های زمانی 6، 12، 18، 24 و 48 است. برای مقیاس زمانی 12 و 24 ماهه، مدل منفرد GRNN دارای نوسانات و خطای بیشتری در مدل سازی و پیش بینی ماهانه SPI بوده است درحالی که مدل هیبریدی در این دو مقیاس زمانی به مراتب رفتار بهتری در مدل سازی و پیش بینی ماهانه داشته است. نمودارهای پراکنش داده های مربوط به SPI مشاهداتی ایستگاه آبادان نشان داد که نتایج مدل سازی برای حالت منفرد و هیبریدی در مقیاس های زمانی 3 و 6 ماهه دقت کمتری نسبت به دیگر مقیاس های زمانی دارد و جدایی خط برازش و همچنین میزان عدم قطعیت آن بیشتر است. هرچند در همه مدل های شبکه عصبی و در تمامی مقیاس های زمانی روش هیبریدی دقت بیشتری از خود نشان داده است. نتایج عددی تحقیق نشان دهنده این است که در تمامی SPI ها و ایستگاه های موردمطالعه، مقادیر تفاضلی R2 مثبت است که بیانگر مقادیر بیشتر R2 مدل هیبریدی نسبت به مدل سازی های شبکه عصبی منفرد است که به نحوی نشان دهنده بهبود مدل سازی هیبریدی نسبت به مدل های منفرد است. همچنین مقادیر تفاضلی RMSE نیز در کلیه مدل های موردبررسی و ایستگاه های موردمطالعه منفی است که نشان دهنده کمتر بودن مقدار RMSE در پیش بینی مدل های هیبریدی نسبت به مدل های منفرد شبکه عصبی است. در گراف های تحقیق دیده می شود که مقدار اختلاف ها در RMSE و R2 بیانگر میزان اختلاف بیشتر در مقیاس های زمانی 3 و 6 نسبت به مقیاس های زمانی 12، 18، 24 و 48 است که به نحوی به ماهیت داده های این مقیاس های زمانی برمی گردد. به ترتیب بیشترین بهبود در مقدار R2 و RMSE از مقیاس پایین 3 ماهه به سمت مقیاس های زمانی بالاتر 48 ماهه است.

    نتیجه گیری :

    از یافته های این تحقیق می توان نتیجه گرفت که الگوریتم های شبکه عصبی مصنوعی روش های کارآمدی در مدل سازی و پیش بینی شاخص خشک سالی SPI می باشند. همچنین استفاده از موجک در هر سه مدل شبکه عصبی مصنوعی باعث بهبود نتایج خواهد شد. همچنین می توان نتیجه گرفت که برای مدل سازی بهتر شاخص خشک سالی SPI لازم است نوع و مرتبه موجک بهینه انتخاب شود. از نتایج این تحقیق می توان نتیجه گیری کرد که تکنیک موجک تاثیر بیشتری در مقیاس های زمانی پایین تر یعنی 3 و 6 ماهه نسبت به مقیاس های بالاتر یعنی 24 و 48 ماهه دارد.

    کلید واژگان: خشک سالی, شبکه عصبی, شاخص استانداردشده بارش (SPI), شبکه عصبی پرسپترون چندلایه (MLP), شبکه عصبی تابع پایه شعاعی (RBF), شبکه عصبی رگرسیون تعمیم یافته (GRNN)}
    Drought prediction and modeling by hybrid wavelet method and neural network algorithms
    Jahanbakhsh Mohammadi, Alireza Vafaeinezhad *, Saeed Behzadi, Hossein Aghamohammadi, Amirhooman Hemmasi
    Background and Objective 

    A drought crisis is a dry period of climate that can occur anywhere globally and with any climate. Although this crisis starts slowly, it can have a serious impact on health, agricultural products, the economy, energy, and the environment for a long time to come. Drought severely threatens human livelihood and health and increases the risk of various diseases. Therefore, modeling and predicting drought is one of the most important and serious issues in the scientific community. In the past, mathematical and statistical models such as simple regression, Auto-regression (AR), moving average (MA), and ARIMA were used to model the drought. In recent years, machine learning methods and computational intelligence to model and predict drought have been of great interest to scientists. Computational intelligence algorithms that have been previously considered by scientists to model drought include multilayer perceptron neural network, RBF neural network, support vector machine, fuzzy, and ANFIS methods. In this research, the purpose of modeling and predicting drought is by using three neural network algorithms, including multilayer perceptron, RBF neural network, and generalized regression neural. The drought index used in this research is the standardized precipitation index (SPI). In this research, the wavelet technique in combination with artificial neural network algorithms for modeling and predicting drought in 10 synoptic stations in Iran (Abadan, Babolsar, Bandar Abbas, Kerman, Mashhad, Rasht, Saqez, Tehran, Tabriz, and Zahedan) have been used in different climates and with suitable spatial distribution throughout Iran.

    Materials and Methods 

    This study, initially using monthly precipitation data between 1961 and 2017, SPI drought index in time scales of 3, 6, 12, 18, 24, and 48 months through programming in soft environment MATLAB software implemented. The results of this step were validated using the available scientific software MDM and Drinc. Then, prediction models were designed using the Markov chain. In this study, a total of six computational intelligence models, including three single models of multilayer perceptron neural network (MLP), radial basis function neural network (RBF), and generalized regression neural network (GRNN), and three hybrids wavelet models with these three models (WMLP-WRBF-WGRNN) have been used to model and predict the SPI index in 10 stations of this research. In implementing all these six models, the MATLAB software programming environment has been used. In this study, four types of discrete wavelets were used, including Daubechies, Symlets, Coiflets, and Biorthogonal. Due to the better performance of the Dobbies wavelet, this type of wavelet was used as a final option in the research. In the Daubechies wavelet used between levels 1 to 45, level 3 showed the best performance among different SPI time scales; therefore, the Daubechies level 3 wavelet was used in all hybrid models of this study. After training all six algorithms used, the evaluation criteria of coefficient of determination (R2) and root mean square error (RMSE) was used to measure the difference between actual and estimated values.

    Results and Discussion 

    The results of this study showed that computational intelligence methods have high accuracy in modeling and predicting the SPI drought index. In the first stage, the results showed that the individual MLP, RBF, and GRNN models, if properly trained, have close results in modeling and predicting the SPI drought index. In the next step, it was observed that the wavelet technique would improve the modeling results. In using the wavelet technique in combination with three single models MLP, RBF, and GRNN, the choice of wavelet type is also more effective in modeling, so in this research, the first of the four types of discrete wavelets Daubechies, Symlet, Qoiflet, and Biorthogonal in combination with Three single models of this research were used and the results of these four types of wavelets showed the relative superiority of the Daubechies wavelet over the other three wavelets. In using the Daubechies wavelet, since this wavelet has 45 times and the choice of order was also effective in modeling, it was observed by testing the wavelet 45 times that the 3rd wavelet, in general, has higher accuracy in all time scales of SPI index, 3, 6, 12, 18, 24 and 48 months and also in all three algorithms MLP, RBF, and GRNN. Therefore, in this research, the third-order Daubechies wavelet was used in all three algorithms of this research, as well as in all time scales. The results showed that combining the wavelet technique with all three models MLP, RBF, and GRNN will improve the results. The research graphs showed that for the quarterly time scale, the values obtained from the single model prediction in MLP and RBF modeling have a somewhat one-month phase difference compared to the hybrid model, while in the GRNN model, this prediction difference is negligible. The modeling results for both single and hybrid modeling modes indicate that there is no phase difference between the single and hybrid modeling methods in time scales of 6, 12, 18, 24, and 48. For the 12- and 24-month time scales, the single GRNN model had more fluctuations and errors in SPI monthly modeling and forecasting, while the hybrid model in these two-time scales had much better behavior in monthly modeling and forecasting. Distribution diagrams of data related to observational SPI of Abadan station showed that the modeling results for single and hybrid modes in 3 and 6-month time scales are less accurate than other time scales and fit line separation, and its uncertainty is higher than others. However, in all neural network models and in all time scales, the hybrid method has shown more accuracy. The numerical results of the study indicate that in all SPIs and stations under study, the differential values of R2 are positive, which indicates higher values of R2 in the hybrid model than in single neural network modeling, which indicates an improvement in hybrid modeling compared to individual models. Also, the differential values of RMSE are negative in all studied models and stations, which indicates that the amount of RMSE in predicting hybrid models is lower than individual neural network models. In the research graphs, it can be seen that the amount of differences in RMSE and R2 indicates a greater difference in time scales 3 and 6 than the time scales 12, 18, 24, and 48, which somehow goes back to the nature of the data of these time scales. The most significant improvement in R2 and RMSE is from the 3-month low to the 48-month high, respectively.

    Conclusion

     From the findings of this study, it can be concluded that artificial neural network algorithms are efficient methods for modeling and predicting the SPI drought index. The use of wavelets in all three models of artificial neural networks will also improve the results. It can also be concluded that for better modeling of the SPI drought index, it is necessary to select the optimal wavelet type and order. From the results of this study, it can be concluded that the wavelet technique has a greater impact on the lower time scales, i.e., 3 and 6 months, than the higher scales, i.e., 24 and 48 months.

    Keywords: drought, Neural network, Standardized Precipitation Index (SPI), Multilayer Perceptron neural network (MLP), Radial base function (RBF), Generalized Regression Neural Network (GRNN)}
  • محسن قدس، حسین آقامحمدی زنجیرآباد*، علیرضا وفایی نژاد، سعید بهزادی، علیرضا قراگوزلو
    پیشینه و هدف

     یکی از روش‌ های کاهش جذب تشعشعات خورشیدی و جلوگیری از ایجاد جزایر حرارتی شهری، افزایش سایه توسط پوشش گیاهی است. به خصوص ایجاد سایه بر ساختمان ‌ها که موجب خنک شدن خانه ‌ها، کاهش مصرف انرژی و هزینه ‌ها، افزایش ارزش خانه ‌ها، ایجاد جلوه بصری مناسب و حس خوبی و سرزندگی می ‌شود. هر چند از نظر اقتصادی میزان صرفه‌جویی رخ ‌داده در اثر سایه و خنک شدن هوا برای یک درخت در طول عمر آن در نواحی آب ‌و هوایی مختلف، متفاوت بوده و بستگی به نوع درخت، میزان سایه ‌گستری آن در طول روز و در فصول مختلف سال دارد، اما اثر آن در صرفه‌ جویی مصرف انرژی و هزینه ‌ها قطعی است. موضوع تحقیق حاضر برنامه ‌ریزی استراتژیک در خصوص افزایش پوشش سایه درختان در مناطق مسکونی شهری است. روشی ساده برای ایجاد سایه فراوان کاشت درختان متعدد در اطراف ساختمان‌ ها است. اما این روش در بسیاری از مناطق که با مشکل کمبود آب مواجه ‌اند، به دلیل هزینه‌ های زیاد آن غیر عملی است. ضمن آن ‌که وجود سایه ‌های اضافی بر سطح بام ساختمان، موجب کاهش قابلیت در معرض تابش پرتوی خورشید قرار گرفتن بر سطح بام ساختمان ‌ها و کاهش پتانسیل استفاده از پانل‌ های خورشیدی بر سطح بام برای تولید الکتریسیته خواهد شد. اما چالش اصلی دست‌ یابی به بیشترین مزایای سایه با استفاده از روشی است که بتواند با تعداد کمی درخت در نقاطی بهینه، پوشش سایه بیشینه بر سطح نما و پوشش سایه کمینه بر سطح بام را فراهم آورد. موضوع مکان ‌یابی موقعیت درختان با هدف بهینه ‌سازی پوشش سایه، یعنی بیشینه نمودن پوشش سایه بر سطح نما، درب و پنجره و کمینه نمودن پوشش سایه بر سطح بام، یک مسئله غیرقطعی سخت است و راه‌حل دقیق و قطعی ندارد. لذا از سیستم اطلاعات جغرافیایی سه ‌بعدی و الگوریتم کلونی مورچه ‌ها برای این منظور استفاده‌ شده است. در پژوهش ‌های گذشته شده اغلب اثرات سایه پوشش درخت بر یک ساختمان منفرد موردبررسی قرارگرفته است؛ درحالی‌که در این پژوهش به ‌جای یک ساختمان منفرد یک بلوک ساختمانی، شامل چندین ساختمان متصل به یکدیگر، موردبررسی قرار می ‌گیرد. زیرا در اکثر شهرهای ایران، ساختمان ‌ها به هم چسبیده و تشکیل بلوک ساختمانی را می ‌دهند. ضمن این ‌که در بیشتر پژوهش‌ های پیشین، اثر پوشش سایه حداکثر دو درخت بر روی ساختمان مورد بررسی قرارگرفته است؛ در حالی‌ که در این پژوهش اثر پوشش سایه 15 اصله درخت را بر روی بلوک ساختمانی بررسی می ‌نماییم. در هیچ‌یک پژوهش ‌های انجام‌ شده بهینه ‌سازی پوشش سایه درختان بر سطح نمای ساختمان از روش بهینه‌ سازی فرا-ابتکاری و ترکیب آن با GIS استفاده ‌نشده است. در این پژوهش با رویکردی ترکیبی از GIS در یک محیط سه ‌بعدی و روش‌ فرا-ابتکاری ACO در مکان ‌یابی استراتژیک تعداد مختلف درختان، با هدف بیشینه نمودن پوشش سایه درختان بر سطح نمای ساختمان‌ ها و کمینه نمودن پوشش سایه درختان بر سطح بام استفاده می ‌شود.

    مواد و روش ها

    برای انجام تحلیل ‌ها دو نوع داده موردنیاز است. یکی مشخصات بلوک ساختمانی، برای مثال: ابعاد، موقعیت و اندازه نما، بام، درب و پنجره ‌ها و دیگری مشخصات درخت (ارتفاع و موقعیت). برای مدل ‌سازی مسئله بهینه ‌سازی پوشش سایه درختان از GIS سه ‌بعدی و الگوریتم ACO استفاده ‌شده است. GIS سه ‌بعدی قابلیت ذخیره ‌سازی، تجزیه ‌و تحلیل و ایجاد توپولوژی سه ‌بعدی را فراهم نموده و ACO نیز برای خلاصه ‌سازی شرایط دنیای واقعی در یک مسئله ریاضی استفاده ‌شده است. برای ذخیره ‌سازی اطلاعات مکانی و استخراج سطح پوشش، توپولوژی مکانی از GIS و قواعد مثلثاتی استفاده ‌شده است. پس از ذخیره ‌سازی موقعیت، ترکیب و اطلاعات توصیفی اشیا دو بعدی و سه ‌بعدی توسط داده ‌های توپولوژیکی، برای استخراج موقعیت سایه، ازنظر دافیه و بکمن در 2013 استفاده ‌شده است. سپس با توجه به نظر چرچ و ریوله مسئله مکان ‌یابی پوشش حداکثری تعریف ‌شده است. برای بهینه ‌سازی مکانی سه ‌بعدی به 3 دلیل ذیل از روش ACO استفاده می ‌شود. دلیل اول مبتنی بر استفاده از قواعد مثلثاتی پیچیده فوق ‌الذکر در محاسبه پوشش سایه بر روی ساختمان‌ های مختلف و به خصوص استفاده از مدل سه ‌بعدی پیچیده و با جزییات کامل برای درخت و بلوک ساختمانی است. دلیل دوم مبتنی بر عدم وجود روشی قطعی برای حل این مسئله بهینه ‌سازی با توجه به قیود غیرخطی شامل توابع مثلثاتی و دلیل سوم مبتنی بر وجود فضای پیوسته اطراف بلوک ساختمانی است که در هر مکانی امکان قرارگیری درخت وجود دارد و لذا منجر به بی ‌نهایت ترکیب از ترتیب چند درخت در فضای ممکن برای بررسی مسئله می‌ گردد. جزییات مراحل عبارت‌اند از؛ 1) تعریف مجموعه مکان ‌های ممکن برای درخت بر اساس ارتفاع، قطر تاج، محوطه پیرامونی و چشم‌ انداز بیرونی بلوک ساختمانی. 2) استفاده از روشی برای قرارگیری اولین درخت در تمام مکان‌ های ممکن اطراف بلوک ساختمانی در طی ساعات گرم در روزهای مشخصی از فصل تابستان و محاسبه بیشترین پوشش سایه بر روی بلوک ساختمانی بر اساس وزن اجزا ساختمان. 3) حذف مکان‌ های ممکن قرار گرفته در تاج درخت به‌ منظور جلوگیری از همپوشانی تاج درختان و 4) تکرار مراحل 2 و 3 برای قرارگیری درختان بعدی در مکان ‌های ممکن اطراف بلوک ساختمانی تا زمانی که تعداد درختان به تعداد درختان مورد نظر برای ایجاد سایه برسد. با توجه به این‌که بی ‌نهایت مکان ممکن، یک مرحله ساده‌سازی و محدود کردن تعداد مکان‌ های ممکن ضروری است. برای این منظور، فضای پیوسته به مجموعه مکان ممکن برای قرارگیری Ni درخت بافاصله 2 متری در راستای شمال-جنوب و شرق-غرب خلاصه ‌شده است. ضمن آن‌که به ‌منظور استفاده از روشنایی روز در ساختمان، امکان دید به بیرون از داخل ساختمان و امکان رفت ‌و آمد از درب ‌ها مکان‌ های ممکن روبروی درب ‌ها و پنجره‌ ها حذف ‌شده است. برای پرهیز از ایجاد سایه غیرضروری در بام، حداقل فاصله 2 متر درختان تا ساختمان در نظر گرفته شد.

    نتایج و بحث

     برای بهینه ‌سازی پوشش سایه درختان با استفاده از الگوریتم بهینه ‌سازی کلونی مورچه ‌ها از محیط متلبMATLAB  استفاده شد. برای این منظور ابتدای مدل بلوک ساختمانی مورد بررسی شامل طول، عرض، ارتفاع، در قالب ساختاری تعریف ‌شده که دارای ماتریس ‌های مجزایی برای نمای شمالی، شرقی، جنوبی و غربی بلوک ساختمانی است. برای تعریف بام بلوک ساختمانی نیز ماتریس دیگری استفاده شد. هر عنصر از ماتریس‌های مذکور معادل cm 10× 10 از سطح بلوک ساختمانی و دارای مقدار صفر است. برای مدل ‌سازی ابعاد و محل قرارگیری درب و پنجره‌ ها در هر نما، ساختاری دیگر شامل ماتریس‌ های مجزا برای هر نما تعریف ‌شده است که مقدار عناصر ماتریس در محل قرارگیری درب و پنجره‌ ها برابر یک است. مدل درخت غالب منطقه، شامل ارتفاع و شعاع تاج درخت نیز تعریف گردید. مشخصات خورشید در منطقه مورد مطالعه، شامل آزیموت و ارتفاع خورشید در روزهای مورد مطالعه در بازه‌ های زمانی 15 دقیقه ‌ای از ساعت 9 تا 15 استفاده قرار گرفت. پس از قرارگیری درخت در هر یک از مکان‌ های ممکن و حرکت خورشید، سایه‌ ایجاد شده درختان بر هر نقطه از اجزای ساختمان، موجب تغییر مقدار عنصر ماتریس معادل آن نقطه از صفر به یک می‌گردد. مجموع مقادیر عناصر ماتریس، میزان سایه ایجاد شده توسط درخت را بر هریک از اجزای ساختمان را مشخص می‌ کند. مجموع حاصل‌ ضرب نقطه ‌ای عناصر ماتریس درب و پنجره‌ ها در عناصر ماتریس نما، مقدار سایه ایجاد شده بر درب و پنجره‌ ها را مشخص می‌ کند. برای بیشینه ‌سازی پوشش سایه درختان بر سطح نما، درب/پنجره ‌ها و کمینه ‌سازی پوشش سایه بر سطح بام، تابع هدف تعریف و از الگوریتم ACO استفاده ‌شده است. نتایج حاصل از روش ACO نشان می ‌دهد حالت بهینه پوشش سایه درخت/درختان بر روی بلوک ساختمانی، که بیشترین سایه را بر روی نما و درب و پنجره‌ ها و کمترین سایه را بر روی بام ایجاد نماید، بستگی زیادی به تعداد درختان و موقعیت درب و پنجره ‌ها در نمای بلوک ساختمانی دارد. به ‌طور کلی با افزایش تعداد درختان، میزان سایه ایجاد شده بر اجزای بلوک ساختمانی افزایش می ‌یابد.

    نتیجه گیری

    نتایج حاصل روش ACO نشان داد که برای ساختمانی، در یک منطقه در نیمکره شمالی، درختان در شمال ساختمان تاثیری در ایجاد سایه بر اجزای ساختمان ندارند. با توجه به این‌که در مناطق خشک و گرمسیری محدودیت در کاشت درختان وجود دارد، یافتن موقعیت مناسب برای درختان نقش بسزایی در بهینه‌ سازی پوشش سایه بر اجزای ساختمان دارد. با توجه به میزان انتقال گرمایی بالا از طریق درب و پنجره ‌ها نسبت به ‌نما و بام، و وزن بیشتر در نظر گرفته ‌شده برای این اجزا در تابع هدف، یافتن موقعیت ‌های بهینه درختان بستگی زیادی به موقعیت درب و پنجره‌ ها در ساختمان دارد؛ تا بیشترین سایه را بر این اجزا ایجاد نمایند. برای بلوک ساختمانی با تعداد و ابعاد ساختمان ‌های مفروض در پژوهش و با توجه به ابعاد و موقعیت درب و پنجره ‌ها، کاشت یک درخت دریکی از موقعیت ‌های K10، K16، K22 یا K28 که هر یک در فاصله 2 متری جنوب ساختمان و در حد وسط دو پنجره قرار دارد، بهینه ‌ترین سایه را ایجاد می ‌نماید. این درخت به‌ طور میانگین از ساعت 9 تا 15 در چهار روز مورد بررسی، بر کل نما، درب/پنجره‌ها و بام ساختمان به ترتیب 7.48، 9.22 و 0.85 درصد سایه ایجاد می ‌کند. در حالتی که کاشت دو درخت مدنظر باشد، بازهم دو موقعیت از موقعیت ‌های K10، K16، K22 یا K28 بهینه ‌ترین سایه را ایجاد می ‌نماید. این دو درخت به‌ طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر کل نما، درب/پنجره‌ها و بام ساختمان به ترتیب 13.88، 18.64 و 1.69 درصد سایه ایجاد می ‌کنند. در حالت سه درخت موقعیت‌ های K8، K18 و K22، در حالت چهار درخت موقعیت‌ های K14، K20، K26 و K32، در حالت پنج درخت موقعیت‌ های K8، K14، K20، K26 و K32 بهینه ‌ترین سایه را ایجاد می‌ کنند. این موقعیت‌ ها در فاصله 2 متری جنوب ساختمان قرار دارند. در حالت سه درخت به ‌طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر کل نما، درب/پنجره‌ها و بام ساختمان به ترتیب 21.07، 28.54 و 2.54 درصد، در حالت چهار درخت بر کل نما، درب/پنجره‌ها و بام ساختمان به ترتیب 24.96، 35.36 و 3.39 درصد و در حالت پنج درخت بر کل نما، درب/پنجره‌ها و بام ساختمان به ترتیب 33.26، 44.70 و 3.95 درصد، سایه ایجاد می‌شود. با کاشت پنج درخت بیش از 88 درصد نمای جنوبی و بیش از 90 درصد درب/پنجره ‌های نمای جنوبی ساختمان تحت پوشش سایه قرار می ‌گیرد. اما با توجه به هدف بهینه ‌سازی سایه بر ساختمان و وزن بیشتر درب و پنجره ‌ها، روش ACO موقعیت درختان را به‌ گونه ‌ای بهینه یابی کرده است که سطح بیشتری از درب و پنجره‌ها در معرض سایه قرار بگیرد. با توجه به این‌که در حالت پنج درخت، 90 درصد نمای جنوبی در سایه درختان قرار گرفت، در حالت شش درخت علاوه بر نمای جنوبی، نماهای شرقی و غربی نیز برای کاشت درخت در نظر گرفته شد. به ‌طوری‌که موقعیت ‌های K8، K14، K20 و K30 در فاصله دو متری نمای جنوبی و موقعیت H2 در فاصله 2 متری نمای غربی و موقعیت H36 در فاصله 2 متری نمای شرقی برگزیده شد. این درختان به ‌طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر روی نما، درب/پنجره‌های و بام به ترتیب 33.95، 42.29 و 3.64 درصد سایه ایجاد می ‌کند.

    کلید واژگان: پوشش سایه درختان, سامانه اطلاعات جغرافیایی سه بعدی, روش فرا-ابتکاری کلونی مورچگان}
    Mohsen Ghods, Hossein Aghamohammadi Zanjirabad *, Alireza Vafaeinezhad, Saeed Behzadi, Alireza Gharagozlo
    Background and Objective

    A method to reduce the absorption of solar radiation and prevent the creation of urban heat islands is to increase shade by vegetation. A shadow creating on buildings, causes houses to cool down, reduces energy consumption and costs, increases the value of houses, and creates a proper visual effect and a sense of well-being and vitality. Although economically, the amount of savings due to shade and cooling of the air for a tree during its lifetime in different climatic regions is different and depends on the type of tree, the amount of shade during the day and in different seasons of the year, but its effect on energy savings and costs are definite.  The subject of the present study is strategic planning to increase the shade coverage of trees in urban residential areas. A simple way to create plenty of shade is to plant numerous trees around buildings. However, this method is impractical in many areas that face water shortages due to its high costs. In addition, the presence of additional shadows on the rooftop of the buildings will reduce the ability to be exposed to sunlight and the potential of using solar panels to generate electricity. So the main challenge is using a method that can provide maximum shade coverage on the facade surface and minimum shadow coverage on the rooftop with a few trees in optimal locations. The issue of locating trees with the aim of optimizing shade coverage, i.e. maximizing shade coverage on facades and opening components, and minimizing shadow coverage on the rooftop, is a Non-deterministic Polynomial hard (NP-hard) problem and has no exact solution. Therefore, the 3D Geographic Information System and the Ant Colony Optimization algorithm have been used for this purpose. Previous studies have often examined the effects of tree canopy shade on a single building. But in most cities in Iran, buildings are connected together and form a building block. So, instead of a single building, a building block is examined. In addition, in most previous studies, the effect of shade coverage of a maximum of two trees on the building has been investigated; while in this study, we examine the effect of shade coverage of 15 trees on the building block. None of the studies on optimizing the shade of trees on the facade of the building has used the meta-heuristic optimization methods and its combination with GIS. In this study, a hybrid model of GIS in a three-dimensional environment and ACO is used for maximizing the shade of trees on the facade and opening components of buildings, and minimizing the shade of trees on the rooftop.

    Materials and Methods

     Two types of data are required to perform the analysis; The building block properties, for example, dimensions, position, and size of the facade, rooftop, and opening components, and the tree properties (height and position). 3D GIS and ACO algorithms have been used to model tree shade coverage optimization. 3D GIS provides abilities for storing, analyzing, and creating 3D topologies, and ACO is used to summarize real-world conditions in a mathematical problem. GIS and trigonometric rules have been used to store geographical information and spatial topology. After storing the position, composition, and description information of 2D and 3D objects by topological data, Duffie and Beckman relations (2013) is used to extract the position of the shadow. Then, according to Church and Revelle, the Maximal Covering Location Problem (MCLP) is defined. For the following 3 reasons, ACO has been used for three-dimensional optimization; 1) The complex trigonometric rules in calculating the shadow coverage on buildings, 2) There is no deterministic solution for optimization problems because of nonlinear constraints including trigonometric functions, 3) The existence of continuous space around the building block that It is possible to place a tree in any position. The details of the steps are; 1) Define the set of possible locations for the tree based on the height, diameter of the canopy, and around space of the building block, 2) Use a method to place the first tree in all possible places around the building block during hot hours on certain days of the summer and calculate the maximum shade coverage on the building block based on the weight of the building components, 3) Remove the places that may be done in the tree canopy to prevent overlapping of tree canopies, 4) Repeat steps 2 and 3 to place the next trees in the possible places around the building block until the number of trees reaches the desired number of trees to create shade. Considering the infinite possible positions, a simplification step is required to limit the number of available positions. Therefore, the constant space is reduced to possible positions for locating Ni trees with two-meter spacing in the N-S and E-W directions. Further, the possible tree positions in front of the opening components are eliminated to make daylight available, have an outlook from the building, and comment through the doors. The minimum spacing of two meters between the trees and the building is set to prevent unnecessary shading on the rooftop.

    Results and Discussion

    MATLAB environment is used to optimize the shade coverage of trees using the ACO algorithm. For this purpose, properties of the buildings block such as length, width, height, are modeled in a struct in MATLAB. This struct has separate matrices for the north, east, south, and west views of the building block. Another matrix is also used to model the rooftop. Each element of the mentioned matrices is equal to 10× 10 cm from the surface of the building block and has a value of zero. To model the dimensions and location of doors and windows in each facade, another struct includes separate matrices for each facade is used. In these matrices, the amount of elements in the location of doors and windows is one. The characteristics of the sun in the study area are used, including azimuth and altitude of the sun on the studied days in 15-minute intervals from 9 to 15 hours.  The shadow is created on building components, by placing the tree in any of the possible locations, and movement of the sun. The elements of the matrices equivalent to the shaded building components change from zero to one. The sum of the values of the matrix elements determines the amount of shadow created by the tree on each component of the building. The sum of the point multiplication of the door/window matrix elements in the facade matrix elements determines the amount of shadow created on the doors/windows. The objective function is defined and the ACO algorithm is used to maximize the shadow coverage of trees on the facade, doors/windows, and minimize the shadow coverage on the rooftop. The results of the ACO show that the optimal shade coverage on the buildings block, which creates the most shade on the facade and doors and windows and the least shade on the roof, depends on the number of trees and the position of the doors and windows in buildings block. In general, as the number of trees increases, the amount of shadow created on the building block components increases.

    Conclusion

    The results of the ACO showed that for buildings, in the northern hemisphere, the trees in the north of the buildings have no effect on casting shadows on the components of the building. Due to the fact that in arid and tropical regions there are restrictions on planting trees, finding a suitable position for trees plays an important role in optimizing the shade coverage. Due to the high heat transfer through the doors and windows compared to the facade and rooftop, the higher weight is considered for these components in the objective function. Finding the optimal position of the trees depends a lot on the position of the doors and windows in the building to create the most shadow on these components. For a buildings block with the number and dimensions of buildings assumed in the research and according to the dimensions and position of doors and windows, planting a tree in one of the positions K10, K16, K22, or K28 creates the most optimal shade. These positions are 2 meters from south of the buildings and in the middle of two windows. On average, this tree provides 7.48, 9.22, and 0.85% shade respectively on the facade, doors /windows, and rooftop from 9 to 15 o'clock in four days studied. In the case of planting two trees, two positions from positions K10, K16, K22, or K28 still provide the optimal shade. On average, these two trees provide 13.88%, 18.64%, and 1.69% of shade respectively on the whole facade, doors /windows, and rooftop at 9:00 AM to 3:00 PM. In the case of three trees, positions K8, K18, and K22, in the case of four trees, positions K14, K20, K26, and K32, in the case of five trees, positions K8, K14, K20, K26, and K32 create the optimal shadow. Shading coverage in the case of three trees, is 21.07, 28.54, and 2.54%, respectively on the facade, doors/windows, and rooftop, in the case of four trees, is 24.96, 35.36 and 3.39% respectively on the façade, doors/windows, and rooftop and in the case of five trees is 33.26, 44.70 and 3.95% respectively on the facade, doors/windows, and rooftop. By planting five trees, more than 88% of the south façade and more than 90% of the south façade doors/windows of the building will be covered with shade. However, due to the goal of optimizing the shadow on the building and the greater weight of the doors and windows, the ACO has optimized the position of the trees in such a way that more surfaces of the doors and windows are exposed to the shadows. Due to the fact that in the case of five trees, 90% of the southern facade is in the shade of trees, in the case of six trees, in addition to the southern facade, the eastern and western facades are also considered for planting trees. So that the positions K8, K14, K20, and K30 are chosen in the distance of 2 meters from the south and the position of H2 is chosen in the distance f 2 meters from the west, and the position of H36 is chosen in the distance of 2 meters from the east. On average, these trees provide 33.95%, 42.29%, and 3.64% shade respectively on the facade, doors/windows, and rooftop.

    Keywords: Optimization, tree shade coverage, 3D geographic information system (3D GIS), Ant Colony Optimization (ACO) algorithm}
  • آزاده قدیمی حمزه کلایی، علیرضا وفایی نژاد*، غلامرضا قدرتی امیری
    یکی از اقدام های مهم بعد از رخ داد زلزله، انتقال ساکنین به نقاط اسکان موقت می باشد. این نقاط، مناطقی از شهر هستند که از ضریب ایمنی بالاتری در برابر رخ داد مجدد زلزله برخوردار بوده، دسترسی مناسبی به مراکز مدیریتی و امدادی دارند و با توجه به شرایط بحرانی منطقه بعد از رخ داد زلزله ی اصلی، با انتقال سکنه ی شهر به این مناطق، عملیات امدادرسانی با بیش ترین سرعت و کم ترین خطر قابل انجام خواهد بود. هدف از مطالعه ی حاضر، تعیین نقاط مناسب برای احداث مکان‏هایی به منظور اسکان موقت آسیب دیدگان بعد از رخ داد زلزله در شهر کرج است. برای این منظور، ابتدا معیارهای موثر در انتخاب محل های مناسب برای اسکان موقت، شناسایی و به دو گروه معیارهای اصلی سازگار و ناسازگار، و دوازده زیرمعیار تقسیم می گردند. باتوجه به ماهیت تعیین مکانی مساله و نیز با در نظر داشتن تعداد پارامترهای موثر در تصمیم گیری، از تلفیق سیستم پردازش اطلاعات مکانی و منطق فازی، به همراه روش های تصمیم گیری چند معیاره، جهت تعیین مناسب ترین نقاط استفاده می شود. بعد از فازی سازی معیارها، وزن دهی و اولویت بندی آن ها با کمک روش تحلیل سلسله مراتبی فازی انجام، و نقشه ی مطلوبیت منطقه نسبت به هر کدام از معیارها تهیه می گردد. نهایتا با تلفیق تاثیر معیارهای مطالعه شده با یک دیگر، نقشه ی مطلوبیت منطقه نسبت به نقاط مناسب برای اسکان موقت، ارایه می گردد. از روی این نقشه، 7 نقطه به عنوان نقاط مناسب برای احداث کمپ اسکان موقت انتخاب و با انجام تحلیل سلسله مراتبی با کمک نرم افزار Expert Choice، بهینه ترین نقطه انتخاب می گردد.
    کلید واژگان: نقاط بهینه ی اسکان موقت, نرم افزار ArcGIS, نرم افزار Expert Choice, تحلیل سلسله مراتبی فازی, شهر کرج}
    Azadeh Ghadimi Hamzehkolaei, Alireza Vafaeinezhad *, Gholamreza Ghodrati Amiri
    One of the important issues after an earthquake occurrence is to transfer residents to temporary accommodations. These points are areas of the city that have a higher safety factor against earthquake reoccurrence and have good access to management and relief centers. Due to the critical condition in the area after the earthquake, with the transfer of the township to these areas, relief procedure can be achieved with the highest speed and minimum risk. The purpose of this study is to determine the suitable locations for the construction of temporary accommodation facilities for injured people after earthquake occurrence in Karaj. To this end, firstly, the main controlling parameters in selection of the appropriate places for temporary accommodation are determined, and are classified into two groups of the main criteria of compatibility and incompatibility. The total number of the sub-criteria are twelve. Due to the spatial nature of this problem, fuzzy logic system with multi-criteria decision-making method is used to determine the most suitable points. After fuzzification of the criteria, their participation weight is determined and then, they are prioritized using fuzzy hierarchical analysis method. In the next step, desirability map of the region is prepared for each of the criteria. Eventually, by combining the impact of the studied criteria, a descriptive map of the region relative to the points of interest for temporary accommodation is generated. Based on this map, seven points are selected as suitable points for the construction of a temporary accommodation camp, and by employing the analytical hierarchy procedure with Expert Choice software, the optimal point is chosen.
    Keywords: Optimal Temporary accommodation points, ArcGIS, expert choice, Fuzzy hierarchy analysis, Karaj city}
  • ترانه علی بخشی، زهرا عزیزی*، علیرضا وفایی نژاد، حسین آقامحمدی زنجیرآبادی

    حوضه آبریز سد شهید عباسپور، قسمت اعظم حوضه آبریز کارون بزرگ است. حوضه یادشده در سال 2019 دو بار در معرض واقعه سیلاب قرار گرفته است. با توجه به اهمیت استراتژیک این حوضه و سیل‏های اخیر، در مطالعه حاضر با استفاده از تصاویر ماهواره‏ای لندست 7 و 8 و محیط آنلاین Google Earth Engine و الگوریتم NDWI با هزینه و زمانی کم، به جداسازی پدیده آب از سایر پدیده‏ ها به منظور بررسی تغییرات مساحت پهنه‏ های آبی موجود در این حوضه طی 20 سال اخیر پرداخته شده است. در مطالعه حاضر مساحت تمامی پهنه‏ های آبی موجود در حوضه آبریز سد شهید عباسپور محاسبه شده و بر اساس آن، تغییرات مساحت پهنه ‏های آبی که حاصل از سیل ‏های سال‏های اخیر است، به دست آمده است. تغییرات یادشده برای مدیریت منابع آبی، مدیریت بحران و دستیابی به توسعه پایدار منطقه کارآمد است. نتایج تحقیق نشان داد در حوضه یادشده، بیشترین حجم آب در سال 2019 وجود داشته و آبگیرها و سدها لبریز از آب شده ‏اند، به گونه ای که با اختلاف زمانی یک ماه، 25 کیلومترمربع به حجم آب‏های آنها افزوده شده است. بر این اساس، خطر جاری شدن سیل، مناطق مسکونی و زراعی را در بر گرفته است و نبود نظارت و توجه جدی به این موضوع، می‏تواند سبب ایجاد خسارت و آسیب‏های جبران ناپذیری در آینده نزدیک شود.

    کلید واژگان: حوضه آبریز سد شهید عباسپور, سیل, سنجش از دور, Google Earth Engine, NDWI}
    Tarane Alibakhshi, Zahra Azizi *, Alireza Vafaeinezhad, Hossein Aghamohammadi

    Shahid Abbaspour Dam area is the largest part of Karun Bozorg which had been exposed to floods twice in 2019. Given the strategic importance of the basin and recent floods, the present study uses Landsat 7, Landsat 8, Google Earth Engine and NDWI algorithms at low cost and low time to isolate the water phenomenon from other phenomena for review purposes. The changes in the area of water areas in this basin have been addressed in the last 20 years. In these studies, the area of all water areas in this catchment area has been calculated and based on it, the changes in the area of water areas resulting from the floods of recent years; It is really efficient to obtained for manage water resources, crisis management and achieves sustainable development of the region. The results of this research show that in the mentioned basin, the highest volume of water was in 2019 and the reservoirs and dams were filled with water, so that with a time difference of one month, 25 square kilometers have been added to the volume of their water. According to this information, the risk of flooding covers residential and agricultural areas, and the lack of serious supervision and attention to this issue can cause irreparable damage in the near future.

    Keywords: Shahid Abbaspour Dam catchment area, Flood, remote sensing, Google Earth Engine, NDWI}
  • منیره موسی بیگی، ایمان بهارلو*، علیرضا وفائی ن‍ژاد

    شناسایی عوامل موثر در گسترش فرسایش خاک و پهنه بندی آن یکی از عوامل اساسی، جهت مدیریت و کنترل این پدیده و تعیین راهکارهای مناسب در مقابله با گسترش آن است. هدف از این پژوهش، پهنه بندی فرسایش خاک در حوضه قلعه چای، در غرب استان آذربایجان شرقی با استفاده از فرآیند تحلیل شبکه ای و سیستم اطلاعات جغرافیایی است. بدین منظور با بررسی منابع و نظر کارشناسان، عوامل موثر بر فرسایش خاک از قبیل شیب، جهت شیب، لیتولوژی، کاربری اراضی، شاخص تفاوت پوشش گیاهی نرمال شده (NDVI)، بارندگی سالانه و خاک مورد ارزیابی قرار گرفته و سپس با استفاده از نرم افزار ArcGIS و ضرایب استخراج شده در فرآیند تحلیل شبکه، نقشه پهنه بندی فرسایش خاک تهیه و در پنج کلاس، فرسایشی خیلی زیاد، زیاد، متوسط، کم و خیلی کم، باز طبقه بندی شد. نتایج این تحقیق نشان داد کلاس های خطر زیاد و بسیار زیاد، در مجموع 12/37 درصد از مساحت منطقه که 56/118 کیلومترمربع را شامل می شود، در بر می گیرد. همچنین در بخش های جنوبی و مرکزی حوضه، مقدار فرسایش خاک زیاد است، این مناطق شرایط بحرانی و حادی را از نظر فرسایش نشان می دهند و با توجه به احداث و آبگیری سد قلعه چای، می بایست در اولویت اجرای برنامه های حفاظت خاک و آبخیزداری قرار گیرند.

    کلید واژگان: پهنه بندی, فرآیند تحلیل شبکه ای, فرسایش خاک, قلعه چای, GIS}
    Monireh Mosabeaigi, Imam Baharloo*, Alireza Vafaeinezhad

    Identify factors contributing to the spread of soil erosion, and zoning is an important tool to manage and control this phenomenon and to determine appropriate ways are to deal with spreading this phenomenon. In this research, using analysis network process model and GIS has been estimated zoning map of soil erosion in the catchment tea castle in West, East Azerbaijan Province. For this purpose, by examine the sources and expert opinion, effective factors such as slope, aspect, lithology, land use, normalized difference vegetation index (NDVI), annual precipitation and soil is provided of the geographic information system environment. Then, using Arc GIS software and extracted coefficient, the analysis network process prepared to zone map soil erosion and in five classes: very high, high, medium, low and very low. The results showed that 37.12 percent of the area that includes 118.56 square kilometers, is located in risk classes the high and very high. Furthermore, necessary to explain that in the southern and central parts of the basin is the amount of soil erosion high. These areas showed critical situations and acute erosion. And due to dam construction, Ghale Chai should be placed the priority programs and plans of soil conservation and watershed management.

    Keywords: Zoning, Analysis Network Process, Soil Erosion, Ghale Chai, GIS}
  • نیکروز مستوفی، حسین آقامحمدی زنجیرآباد*، علیرضا وفایی نژاد، مهدی رمضانی، امیرهومن حمصی

    در تحقیقات اخیر، دانشمندان توجه ویژه ای به مسئله گرمایش جهانی داشته اند، زیرا دمای سطح زمین در طول قرن گذشته به طور قابل توجهی افزایش یافته است. جزایر حرارتی شهری[1] به پدیده ای ناشی از آثار شهرنشینی اشاره دارد که درجه حرارت در محیط شهری از مناطق اطراف آن بالاتر می رود. بررسی این دما توسط سنسورها دارای مشکلاتی همچون هزینه و گسسته بودن نقاط اندازه گیری را دارد. بنابراین تحقیق حاضر تلاش می کند، با تکنیک سنجش از دور مدلی کمی و پیوسته را برای پوشش این مشکلات در شهر تهران ارایه دهد. لذا با استفاده از تصاویر لندست 8 [2]، و داده های سنجنده مودیس، فاکتور هایی تولید و بررسی می شوند که در تولید جزایر حرارتی شهری موثر هستند. به منظور تولید این فاکتورها ابتدا با انجام تصحیحات لازم برروی تصاویر مورد نیاز، تعداد چهارده شاخص انتخاب و در سه سناریو مختلف محاسباتی شامل روش رگرسیون خطی، رگرسیون بردار پشتیبان و با استفاده از الگوریتم ژنتیک بکارگرفته شد. به منظور مدل سازی رویکردهای بیان شده، مجموعا 2400 نقطه دارای دما به عنوان داده میدانی از منطقه مورد مطالعه (شهر تهران) جمع آوری شده است. برای ارزیابی کارایی سناریو های مورد استفاده، 30% داده ها (جمعا 720 نقطه) به صورت اتفاقی انتخاب شده و بعنوان داده های آموزشی در نظر گرفته و مابقی 70% داده ها (جمعا 1680 نقطه) به عنوان داده های تست مورد ارزیابی قرار گرفت.براساس نتایج بدست آمده، ترکیب مدل رگرسیون بردار پشتیبان و الگوریتم ژنتیک بهترین تطابق را (میانگین خطای مربعی 9324/0، نرمال شده میانگین خطای مربعی 2695/0 و ضریب همبستگی 9315/0) با داده های زمینی مورد استفاده دارند.

    کلید واژگان: جزایر حرارتی شهری, رگرسیون خطی, رگرسیون بردار پشتیبان, الگوریتم ژنتیک, تصاویر لندست 8}
    Nikrouz Mostofi, Hossein Aghamohammadi Zanjiirabad *, Alireza Vafaeinezhad, Mahdi Ramezani, Amir Houman Hemmasi
    Introduction

    Surface temperature is considered to be a substantial factor in urban climatology. Italso affects internal air temperature of buildings, energy exchange, and consequently the comfort of city life. An Urban heat island (UHI) is an urban area with a significantly higher air temperature than its surrounding rural areas due to urbanization. Annual average air temperature of an urban area with a populationof almost one million can be one to three degreeshigher than its surrounding rural areas. This phenomenon can affect societies by increasing costs of air conditioning, air pollution, heat-related illnesses, greenhouse gas emissions and decreasing water quality. Today, more than fifty percent of the world’s population live in cities, and thus, urbanization has become a key factor in global warming. Tehran, the capital of Iran and one of the world’smegacities, is selected as the case study area of the present research. A megacity is usually defined as a residential area with a total population of more than ten million. We encountered significant surface heat island (SHI) effect in this area due to rapid urbanization progress and the fact that twenty percent of population in Iran are currently living in Tehran.SHI has been usually monitored and measured by in situ observations acquired from thermometer networks. Recently, observing and monitoring SHIs using thermal remote sensing technology and satellite datahave become possible. Satellite thermal imageries, especially those witha higher resolution, have the advantage of providing a repeatable dense grid of temperature data over an urban area, and even distinctive temperature data for individual buildings.Previous studies of land surface temperatures (LST) and thermal remote sensing of urban and rural areas have been primarily conducted using AVHRR or MODIS imageries.

    Materials and Methods

    Recently, most researchers use high resolution satellite imagery to monitor thermal anomalies in urban areas. The present study takes advantage of themost recentsatellite in the Landsat series (Landsat 8) to monitor SHI, and retrieve brightness temperatures and land use/cover types.Landsat 8 carries two kind of sensors: The Operational Land Imager (OLI) sensor has all former Landsat bands in addition of three new bands: a deep blue band for aerosol/coastal investigations (band 1), a shortwave infrared band for cirrus detection (band 9), and a Quality Assessment (AQ) band. The Thermal Infrared Sensor (TIRS) provides two high spatial resolution thirty-meter thermal bands (band 10 and 11). These sensors use corrected signal-to-noise ratio (SNR) radiometric performance quantized over a 12-bit dynamic range. Improved SNR performance results in a better determination of land cover type. Furthermore, Landsat 8 imageries incorporate two valuable thermal imagery bands with 10.9 µm and 12.0 µm wavelength. These two thermal bands improve estimation of SHI by incorporating split-window algorithms, and increase the probability of detectingSHI and urban climatemodification. Therefore, it is necessary to design and use new procedures to simultaneously (a) handle the two new high resolution thermal bands of Landsat 8 imageries and (b) incorporate satellite in situ measurement into precise estimation of SHI.Lately, quantitative algorithms written for urban thermal environment and their dependent factors have been studied. These include the relationship between UHI and land cover types, along with its corresponding regression model. The relation between various vegetation indices and the surface temperature was also modelled in similar works. The present paper employ a quantitative approach to detect the relationship between SHI and common land cover indices. It also seeks to select properland coverindices from indices like Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Build-up Index (NDBI), Modified Normalized Difference Water Index (MNDWI), Bare soil Index (BI), Urban Index (UI), Index based Built up Index (IBI) and Enhanced Built up and Bareness Index (EBBI). Tasseled cap transformation (TCT) which is a method used for Landsat 8 imageries, compacts spectral data into a few bands related to thecharacteristics of physical scene with minimal information loss. The three TCT components, Brightness, Greenness and Wetness, are computed and incorporated to predict SHI effect.The main objectives of this research include developing a non-linear and kernel base analysis model for urban thermal environment area using support vector regression (SVR) method, and also comparing the proposed method with linear regression model (LRM) using a linear combination of incorporated land cover indices (features). The primary aim of this paper is to establish a framework for an optimal SHI using proper land cover indices form Landsat 8 imageries. In this regard, three scenarios were developed:  a) incorporating LRM with full feature set without any feature selection; b) incorporating SVR with full feature set without any feature selection; and c) incorporating genetically selected suitable features in SVR method (GA-SVR). Findings of the present study can improve the performance of SHI estimation methods in urban areas using Landsat 8 imageries with (a) an optimal land cover indices/feature space and (b) customized genetically selected SVR parameters.

    Result and Discussion

    The present study selects Tehran city as its case study area. It employs a quantitative approach to explore the relationship between land surface temperature and the most common land cover indices. It also seeks to select proper (urban and vegetation) indices by incorporating supervised feature selection procedures and Landsat 8 imageries. In this regards, a genetic algorithm is applied to choose the best indices by employing kernel, support vector regression and linear regression methods. The proposed method revealed that there is a high degree of consistency between affected information and SHI dataset (RMSE=0.9324, NRMSE=0.2695 and R2=0.9315).

    Keywords: Urban heat island, Support vector regression, Linear regression model, genetic algorithm, Landsat8 Imagery}
  • محمد فلاح ززولی*، علیرضا وفایی نژاد، علی اصغر آل شیخ، مهدی مدیری، حسین آقامحمدی

    زمین لغزش از انواع مهم مخاطرات طبیعی است که امنیت جانی و مالی را مورد تهدید قرار می دهد و موجب تخریب محیط زیست و منابع طبیعی می شود. تهیه  نقشه های پهنه بندی از جمله اقداماتی است که از طریق آن می توان مناطق حساس به لغزش های آینده را شناسایی و از نتایج آن برای برنامه ریزی کاربری زمین، جلوگیری از فعالیت های عمرانی غیرمجاز، طرح ریزی زیرساخت ها و بهسازی و ترمیم آن ها استفاده کرد. این مطالعه با بهره گیری از سیستم اطلاعات مکانی و مدل های آنتروپی شانون و ارزش اطلاعاتی چارچوبی را برای تهیه نقشه مناطق حساس به زمین لغزش در منطقه رودبار الموت شرقی در استان قزوین که درگیر معضل زمین لغزش و ناپایداری های دامنه است، ارائه می دهد. در این راستا بعد از شناسایی عوامل موثر بر وقوع زمین لغزش و تهیه داده های مربوطه، نقشه های معیار شامل لیتولوژی، شیب، فاصله از گسل، کاربری اراضی، بارش، جهت شیب و ارتفاع برای محدوده مورد مطالعه با تفکیک پذیری مکانی سی متر تولید شد. برای تهیه لایه های اطلاعاتی و اجرای مدل از نرم افزار ArcGIS با توجه به قابلیت آن در تحلیل داده های مکانی، بهره گرفته شده است. ارزیابی نتایج با استفاده از شاخص احتمال تجربی نشان داد که هر دو مدل آنتروپی شانون و ارزش اطلاعات در برآورد پهنه های خطر متوسط، زیاد و خیلی زیاد می توانند به خوبی با مقدار شاخص احتمال تجربی 86% در شناسایی مناطق مستعد زمین لغزش در منطقه مورد مطالعه عملکرد مناسبی داشته باشند. در برآورد پهنه های خطر زیاد و خیلی زیاد، مدل ارزش اطلاعات با مقدار شاخص احتمال تجربی 86% در مقایسه با مدل آنتروپی شانون با مقدار شاخص احتمال تجربی 72% از قابلیت بهتری برخوردار است. با توجه به نقشه های پهنه بندی لغزش، پهنه های با خطر زیاد و خیلی زیاد اغلب در باغ ها و مراتع فقیر و امتداد گسل های منطقه قرار دارند، لذا لازم است فعالیت های انسانی با هدف ساخت و ساز و توسعه را در این مناطق محدود کرد.

    کلید واژگان: زمین لغزش, سیستم اطلاعات مکانی (GIS), آنتروپی شانون, ارزش اطلاعات, رودبار الموت}
    Mohammad Fallah Zazuli *, Alireza Vafaei Nezhad, Ali Asghar Alesheikh, Mahdi Modiri, Hossein Aghamohammadi
    Introduction

    Landslide is one of the most important types of natural disasters,which endangers lives and financial security of many people and destroys environment and natural resources.With the present population growth and expansion of urban areas towardsteep areas and hillsides, landslide-related losses can be catastrophic. For an instance, landslides in Badakhshan Province in Afghanistan killed around 2,700 people in 2014, and a landslide in China (Shan’xiprovince)resulted in the disappearance of 64 people in 2015.Therefore, assessingthe possibility of landslides occurrence seems to becrucial. Providing zoning maps is one of the measures which makes identification of areas prone to future landslides possible. Inferences drawn from these maps can be used for land use planning, prevention of unauthorized construction activities, infrastructure development, refurbishment and restoration.

     Materials & Methods

    The present research selectsEast Rudbar-e Alamut (a district of Qazvin province), which is affected by landslides and instability of hillsides, as the study area. It takes advantage of Shannon entropy and information value models to develop landslide susceptibility map of the study areain GIS environment.Shannon entropy theory has been used in extensive researcheswith the aim of prioritizinginfluential factors in the probable occurrence of natural disasters such as landslide. Information value (IV) model is one of the statistical models drawn from information theory with a widespread application in the modeling of geological hazards and disaster risk assessment. Information value model aims to find a combination of significant factors anddeterminetheir impacton theoccurrence oflandslide in an area.To implement this model, relevant data and its related criteria maps were prepared. In this regard, the location of previous landslide events in the study area was determined based on the information received from Forests, Range and Watershed Management Organization. 49 landslides were identified in this way. Then, data was randomly divided into 2 categories: training data and validation data. Thus, 70% of data (35 landslides) were used to produce the models and the remaining 30% (14 landslides) were used for validation purposes. In addition to previous landslides, a collection of topographic, environmental and climatic characteristics of the study area including seven criteria of lithology, slope, distance from faults, land use, precipitation, slope-direction and elevation were selected as the most effective independent variablesto produce criteria maps with 30-meter spatial resolution. Basic information used to map these seven influential factors was obtained from Forests, Range and Watershed Management Organization, as well as the SRTM Digital Elevation Model (DEM), and used after some modifications. Considering the capability of ArcGIS in spatial data analysis, thissoftwarewas used to produce information layers and implement the models.

     Results & Discussion

    Prioritizing influential factors using Shannon entropy model introducesthree factors (i.e. land use, elevation and precipitation)as the most significant factorsin the occurrence of landslides in the study area. Factors of slope angle, distance from faults (almost equal to slope angle), lithology and slope-direction were in the next influential factors.Also, results of information value model indicate that looking from lithology perspective, the category of marl, calcareous sandstone, sandy limestone and minor conglomerate has an information value of 1 and thus, the highest probability of landslide occurrence. Category of basaltic volcanic rocks, along with category of well bedded green tuff and tuffaceous shale have the lowest probability of landslide occurrence with information values ​​of -2.03 and -1.70, respectively.Only two categories of theslope angle criterionhave a positive-index. The highest information value (0. 93) in this category occurs in the class of 5-12 degrees, followed by the class of 12-20 degrees. The lowest information value occurs in slopes of more than 30 degrees. Based on this observation, it can be clearly concluded that the slope angles of 5 to 20 degrees are most prone to landslides. Distance to faults criterion indicate that the category of500 to 1000-meter distance to faultshave the highest information value (1.67). Regarding land use criterion, three land uses of garden, agriculture and garden-agriculture have the highest information values ​of 2.16 and 1.59 and 1.11, respectively. Regarding precipitation, average annual rainfall of less than 400 millimeters have the highest information value (1.50). Regardingslope-direction criterion, most landslides occur in southwest, south and eastdirections.Northeast, west, and northwest directions have the lowest probability of landslide occurrence, respectively. In terms of elevation, the information value is reduced as the height increases, and the maximum information value is related to the elevations of less than 1200 meters.After assigning a weight to each criterion and related classes, the landslide risk zone map was generated based on Shannon entropy and information valuemodels. The resulting zoning map produced based on natural breaks methods dividesthe area into five classeswith very high, high, moderate, low and very low risk. Resultsof Shannon entropy modelindicate that out of 14 landslides considered as the validation data, 3, 7, 2, 1, 1 landslideshave occurred in very high, high, moderate, low and very low risk zones, respectively. Resultsof the information value modelindicatethat 8, 4, 0, 1, 1 landslideshave occurred in very high, high, moderate, low and very low risk zones, respectively.

    Conclusion

    Evaluation of results using experimental probability index indicates that with 86% experimental probability,both models of Shannon entropy and information value are effective inidentification of landslide hazard in the East Rudbar-e Alamut region. Also, considering the number of landslides in very high and high risk zones, Shannon entropy and information value modelshave an experimental probability index of 72% and 86%, respectively, which prove higher efficiency of information value model. In Shannon entropy model, total area of very high, high and moderate risk zones covers 34% and 56% of the study area,respectively. In information value model,total area of very high and high risk zones covers 20% and 29% of the study area, respectively. Based on the landslide risk zone map, high and very high risk zones are mainly located in the west of the study area

    Keywords: landslide, GIS, Shannon Entropy, information value, East Roudbar-eAlamout}
  • ناهید بهرامی، میثم ارگانی*، محمدرضا جلوخانی نیارکی، علیرضا وفایی نژاد

    زلزله، بحران و بلای طبیعی تقریبا پیش بینی ناپذیری است که همه ساله انسان های زیادی به خسارات جبران ناپذیر جانی و مالی آن دچار می شوند. مدیریت این گونه بحران ها هم به پیش از وقوع آنها مربوط می شود و هم به پس از آن. امداد و نجات، جزء مراحلی در وقوع حوادث است که می توان با مطالعه و بررسی آن پیش از وقوع به راهکاری برای بهبود عملکرد گروه های امداد و نجات در هنگام بحران رسید. در این پژوهش با بهره گیری از سیستم اطلاعات مکانی و الگوریتم ازدحام ذرات و شبیه سازی زلزله ای فرضی، راهکاری برای مدیریت بهینه گروه های امداد و نجات در وقوع زلزله پیشنهاد می شود. در این روش، زلزله ای فرضی در تهران شبیه سازی شد و 32 امدادرسان در قالب چهار گروه عملیاتی در 148 مجتمع مسکونی در محدوده تحقیق به انجام وظیفه پرداختند. امدادگران با استفاده از الگوریتم ازدحام ذرات در یک سیستم اطلاعات مکانی، به گونه ای به فعالیت های امداد و نجات اختصاص یافتند که در زمان کمتری، امداد و نجات بیشتر و نیز کارامدتر نسبت به حالت تجربی و سنتی انجام دهند. استفاده از این الگوریتم برای بهینه سازی شبیه سازی ها و نیز اجرای ساختار علمی و عملی فعالیت ها و گروه های عملیاتی امداد و نجات، راهکاری نوین برای بهبود کیفیت امداد و نجات پس از زلزله خواهد بود. نتایج اجرای الگوریتم پیشنهادی این پژوهش، بهبود حدود دوبرابری تخصیص صورت پذیرفته را نشان داد.

    کلید واژگان: الگوریتم ازدحام ذرات, امداد و نجات, زلزله, مدیریت بحران, مکانمند}
    Nahid Bahrami, Meysam Argany *, Mohammadreza Jelokhani Neyaraki, Alireza Vafaeinezhad

    Every year, many human beings suffer from an earthquake as a near-unpredictable natural disaster and its devastating human and financial losses. Management of such crises is related both before and after the crisis. Relief and rescue is only a stage in the occurrence of disasters can be studied in advance of the crisis to provide a solution to improve the performance of relief and rescue teams during the crisis. In this study, using a spatial information system and particle swarm algorithm and simulating a presumptive earthquake, a solution is suggested for optimal management of relief and rescue teams in earthquake. In this method, an earthquake, and 32 relief workers of four operational teams in 148 housing complexes simulated to study area in Tehran. Rescuers, with the help of particle swarm algorithm in a spatial information system, were allocated relief and rescue activities, in less time, would provide relief and rescue more efficient than the empirical mode. The use of this method to optimize simulations, as well as to implement the scientific and practical structure of relief and rescue teams and activities, will be a new way to improve the quality of relief and rescue after the earthquake. The results of the proposed method of this research showed Performance improvements of about twofold.

    Introduction

    One of the issues that most of the world's major cities face is the issue of natural disasters. The nature of the overwhelming majority of natural disasters and the need for quick and correct decision-making and implementation of operations has created knowledge of "crisis management". This knowledge refers to the set of activities that occur before, during and after the occurrence of disaster, in order to reduce the probable vulnerability caused by the occurrence of these events [5]. It is necessary to carry out all the affairs and actions necessary to achieve the goals outlined in the above definition, which requires the assumption of operational roles by operational teams [3]. Given the importance of relief and rescue at the time of natural disasters to save lives and property, the proper allocation of aid workers to activities is necessary.
    In order to improve the relief and rescue operation, firstly, activities were carried out at the time of the earthquake, and comprehensive information were obtained on the post-earthquake relief and rescue mode. In order to allocate people, using optimization methods, considering the conditions of this research, is effective in improving the efficiency and effectiveness of post-earthquake relief. Hence, due to the nonlinear relations of this study, and in light of previous research, the particle swarm optimization algorithm was chosen as a suitable method for solving this problem. Moreover, also the use of a spatial information system for modeling, displaying, and updating of force information, activities, and conditions of earthquake area is suitable for optimal forces management [1].

    Theoretical Foundations
    Relief & Rescue
    Review the tasks of the rescuers

    This section examines the responsibilities of rescue workers in the earthquake crisis and important points in the earthquake relief process. Some search and rescue actors include four components of locating, evaluating, fixing, and transferring [19]. First, the location and release of individuals and the medical assessment and, if necessary, the use of primary care, emergency treatment (stabilization) and transfer to treatment centers are carried out [26]. The rescue team should have a precise program to carry out rescue operations for those in detention.
    Search and Rescue Operations Management
    To ensure the success of search and rescue operations in urban areas; it must be done very carefully. The relief and rescue program can be divided into five stages, respectively [26]:
    Primary Identification - Data Collection (Preliminary Assessment)
    Quickly assess the area (Technical Inspection)
    Surface Search and Rescue in the Damaged Area (Primary Rescue)
    Search and rescue by technical means (Secondary Rescue)
    The systematic removal of debris (Final Collapse Lifting)

    On the other hand, seven steps in search and rescue operations are assumed to be considered by the savior’s people [9]:
    Data collection: One of the first steps to be taken is to assess and assess the situation.
    Evaluation of Damage: By looking at different angles to the buildings.
    Identifying resources and accessing them: including access to facilities, equipment, and personnel.
    Priority: Includes emergency diagnosis and safety assurance for the continuation of search and rescue operations. Sometimes a building should be marked in such a way that no other person enters it and waits for other forces or more facilities.
    Designing a Rescue Plan: In this section, it becomes clear who and with whom the conditions will enter the building.
    Guidance for search and rescue operations: Search for people under the rubble remains and caught
    Evaluate progress: The situation must always be checked to assess the progress of the rescue program and to prevent any damage to the relief forces

    Particle Swarm Optimization (PSO)

    The first attempt by Kennedy and Eberhart, simulating the social behavior of birds in 1995, presented the particle group optimization method. The components of a group follow a simple behavior. In this way, each member of the group imitates the success of their other neighbors. The purpose of such algorithms is to move members of the group to the search space and to accumulate at an optimal point (such as the source of food).

    Methodology

    To achieve relief & rescue optimal management, close interaction is being necessary [25]. The results of this study showed that parameters such as the duration of survival under the rubble, the duration, the distance between people and the location of activities, the speed of people when moving to the goal of the relief worker is very important in fulfilling the task. With the studies and studies, finally, the relation one was designed, which is a continuous nonlinear relationship. According to the studies, the method of optimizing the congestion of particle capabilities solves these functions, and this method allocates individuals to activities in this research is optimized:(1)
    In the above relationship, all parameters must follow a unit or reputation [24], “Max Injured” the most injured number among the wounded of each residential building, “Area Assigned” is the area [20], which the same ​​activity is located inside it. “Spacing” the relief distance to the operating area and the “search time” and “search speed” are respectively the duration of the work and the speed of the relief worker. If a rescuer will be sent to a region that is estimated to be several people under debris, the duration of activities will be multiplied by the number of submarines. Moreover, to achieve the final cost of an activity that requires several people, it must be summed of the costs from each who performs that activity.

    Result and Discussion

    The cased study is a part of the central region of ​​Tehran. The relief and rescue activities of the earthquake crisis include Searching, Light Collapse Lifting, Heavy Collapse Lifting, Primary Helping, Securing, Pointing, Securing Pilot, Air update in the rubble, reconstruction of the network of roads [6, 19]. In this research, 32 reliefworkers of four operational teams [22], and at the beginning of the operation, they are deployed at the nearest crisis management center to the study area. Figure 1 shows the first study area and the initial position of the relief workers in the study area.
    Figure 2: Study area and the first location of rescuers
    The following shows building and human damages data showing the initial phase of earthquake simulation, which includes 22 out of 148 damaged sites, and the descriptive information of relief workers in a hypothetical earthquake, in which 14 relief workers out of 32 relief workers, as well as the third, are shown their activities:
    Fig. 2. building and human damages
    Fig. 3. Descriptive information of relief workers
    Regarding the parameters stated in the method of implementation (i.e.; the descriptive information of the rescuers, the activities and initial damages of the earthquake), the proposed algorithm of this research, is evaluated and calculated by using relations discussed for all the rescuers in all the housing complexes. And eventually, the allocated of relief workers to the activities was obtained. An example of the optimal mode of relief and rescue teams is showing in the figure below.
    Fig. 4. Optimization of the Relief & Rescue Team
    In the study area of ​​the image above, the “Rescuers 34” relate to relief workers assigned to Light Collapse Lifting activities; “Rescuers32”, relief workers, and Pointing; “Rescuers31”, rescuers assigned to Searching activities. As well as “Rescuers33” for rescue workers who are engaged in Securing Pilot and relief workers “Rescuers 37”, engaged in Primary Helping activities. The allocation of people is carried out according to the priority, and the residential areas that have more damage are in the priority of the relief effort.
    In evaluating the efficiency of the proposed algorithm, the positive effect of the initial population selection method shown in the results obtained from the implementation of the proposed algorithm. Finally, a 2.2 fold improvement in the results obtained from the state that was not used by this algorithm. In the table below, the calculation of the cost function in the two modes of implementation of the proposed algorithm and its non-implementation is set, which represents the calculating the cost of the allocation in the two situations for the entire operational team.
    Table 1. Comparison of the results of the proposed algorithm and its validation
    Used model
    Cost calculated for the entire operational team
    Without using the proposed algorithm
    0.564
    Using the proposed algorithm
    0.252

    Conclusion

    Due to the facts that the problem is considered to be grouped of the subject of this research, the effectiveness of each person's activity on the other people's activities, and the group and the category of operations, as well as the structure of the particle swarm algorithm, which allows for more repetition in less time, the proposed algorithm of this study is identified as an appropriate solution to the post-earthquake relief and rescue problem.
    The structure of the particle swarm algorithm is continuous; because of the discrete structure of the present, it is implemented discretely by applying changes to the structure of this algorithm. As previously stated, the context of individuals, their specializations, the activities, and the damaged sites have the same priorities as those that were implemented in the algorithm.
    Using the proposed algorithm of this research and applying the changes expressed in it, in order to optimize and implement the scientific and practical structure of relief and rescue operation activities and teams, is a novel and effective way to improve the quality of relief and rescue after it will be an earthquake. Finally, as shown in Table 1 in the findings, the proposed algorithm implementation in this study improved the 2.2% of the results from the allocation of relief workers to a state that was not used by the proposed algorithm of this study.
    For future researches, the optimization methods such as simulated annealing, ant colony, genetics, and game theory are suggested.

    Keywords: Relief, Rescue, Spatial, Crisis Management, earthquake, Particle Swarm Algorithm}
  • آزاده قدیمی حمزه کلایی، غلام رضا قدرتی امیری*، علیرضا قراگوزلو، علیرضا وفایی نژاد، علی زارع حسین زاده
    یکی از مهم ترین گام ها در طرح برنامه های بهسازی لرزه ای برای مناطق شهری در کلان شهرها، تعیین سطح خطرپذیری منطقه می باشد. شکی نیست که پیاده سازی هدفمند یک برنامه ی مدون بهسازی لرزه ای می تواند مناطق شهری را در برابر آسیب های ناشی از رخ داد زلزله ایمن کند، اما هزینه های اجرایی زیاد و زمان بر بودن این طرح ها، از جمله اساسی ترین مشکلات آن ها می باشد. بنابراین، بدیهی است یک برنامه ی منسجم بهسازی لرزه ای زمانی کارآ خواهد بود که بتواند اولویت های اجرایی را از طریق شناسایی مناطق و محله های پرخطرا، تفکیک نماید و در اولویت نخست، هدف اصلی خود را در راستای بهسازی چنین مناطقی متمرکز سازد. در این مقاله، پهنه پندی آسیب پذیری لرزه ای منطقه ی 7 شهر تهران مورد مطالعه قرار می گیرد. برای این منظور، ابتدا شاخص های اصلی موثر بر میزان آسیب پذیری این منطقه، شناسایی می گردد. سپس، با در نظر داشتن عدم قطعیت های موجود در این شاخص ها، میزان تاثیر آن ها بر روی آسیب پذیری منطقه تعیین می شود. به منظور مدل سازی تاثیر هم زمان این شاخص ها و آموزش داده ها، از نرم افزار ArcGIS استفاده می گردد. نتیجه ی این مطالعه، مبین سطح آسیب پذیری محلات مختلف منطقه ی 7 تهران است. در پایان، نتایج به دست آمده به صورت نقشه ی پهنه بندی سطح آسیب پذیری منطقه، ارائه می گردد. بر اساس این نتایج و با شناسایی محلات یا نواحی با خطر لرزه ای بالا، می توان تکنیک های بهسازی لرزه ای منطقه را به طور هدفمند پیاده سازی کرد. نتایج حاصل از این مطالعه، دیدی جامع از وضع موجود منطقه ی مورد مطالعه ارائه می نماید که با استفاده از آن می توان برنامه های بهسازی لرزه ای کارآمد و هدفمند را جهت ایمن سازی منطقه پیشنهاد کرد.
    کلید واژگان: پهنه بندی سطح خطر, نرم افزار ArcGIS, آسیب پذیری لرزه ای, طرح بهسازی هدفمند, منطقه ی 7 تهران}
    Azadeh Ghadimi Hamzehkolaei, Gholamreza Ghodrati Amiri*, Alireza Gharagozlu, Alireza Vafaeinezhad, Ali Zare Hosseinzadeh
    One of the most important steps in designing seismic rehabilitation programs for urban areas in metropolises is determining the region’s risk level. There is no doubt of cast that the implementation of a seamless seismic rehabilitation program can secure urban areas against seismic damages. However, these plans face some difficulties in most cases. For instance, their execution costs are very high, or, they are really time-consuming in some cases. It is obvious that a coherent rehabilitation strategy will be effective if it can distinguish executive priorities by identifying areas with high level of risk, and focusing primarily on improving the general condition of these areas. In this paper, the seismic vulnerability of the 7th region of Tehran is studied. For this purpose, the main parameters that affect the vulnerability of the region are identified first. Then, considering the uncertainties in these parameters, their impact on the vulnerability of the region is determined. ArcGIS software is used not only to model the impact of these parameters, but also for data training. The results of this study show the vulnerability level of different parts of Tehran's 7th region. In fact, this study provides a comprehensive and meaningful overview of the current status of the studied region, which can helps the engineers to design suitable seismic rehabilitation programs. The obtained results are presented as a map which reveals the vulnerability level of the region. Based on such a map, neighborhoods or areas with high seismic hazard are identified. Considering these classification, the seismic rehabilitation techniques can be offered purposefully.
    Keywords: Risk level zoning, ArcGIS software, Seismic vulnerability, Rehabilitation plan, Tehran’s 7th region}
  • بی بی مریم سجادیان جاغرق، علیرضا وفایی نژاد، علی اصغر آل شیخ
    فراگیر شدن دستگاه های تلفن همراه (مانند گوشی های هوشمند و تبلت ها) باعث توسعه سیستم های فراگستر مانند سیستم های ناوبری و سلامت شده است. خصوصیت اصلی سیستم های فراگستر وجود امکان پیکربندی مجدد و انطباق مناسب برنامه کاربردی با توجه به وضعیت جاری کاربر در شرایط محیطی مختلف است. وجود قابلیت های دینامیکی که در طراحی و پیاده سازی سیستم های فراگستر بافت آگاه باید مد نظر قرار گیرد، عمدتا شامل کسب بافت، پردازش و تصمیم گیری و نحوه نمایش اطلاعات می شود. این مقاله بر روی طراحی و پیاده سازی یک سیستم بافت آگاه برای گروه های حساس در شرایط محیطی نامناسب (به طور خاص، آلودگی هوا) متمرکز شده است. آلودگی هوا به عنوان یک پدیده زمانی-مکانی باعث تغییرات شرایط سلامتی می گردد و گاهی اوقات عامل افزایش میزان مرگ ومیر محسوب می شود.در این پژوهش از پلت فرم اندروید، زبان های برنامه نویسی جاوا، PHP و بانک اطلاعات MySQLو SQLit و همچنین از Google Maps API جهت پیاده سازی سیستم استفاده شده است. رویکرد طراحی سیستم پیشنهادی بر اساس معماری توزیع یافته در قسمت جمع آوری و پردازش داده است. جمع آوری داده با استفاده از سنسورهای سخت افزاری و نرم افزاری انجام می شود. سیستم بافت آگاه پیشنهادی می تواند به طور خودکار بافت جاری کاربر را شناسایی کند و داده ها و اطلاعات مورد نیاز را پس از پردازش و استدلال ارائه نماید. ارائه نتایج معمولا به صورت توصیه هایی براساس شرایط جاری کاربر صورت می پذیرد. ویژگی های بارز این سیستم استقلال نسبی آن از ورود داده ها به صورت دستی توسط کاربرو شرکت فعالانه داده ها در تصمیم گیری است. استدلال خودکار بافت بر اساس مجموعه قوانین تعریف شده در قالب قوانین اگر...آنگاه... اجرا می شود. نتایج خروجی متناسب با علایق و ترجیحات کاربر تفسیر و در رابط کاربر نمایش داده می شود. نحوه نمایش اطلاعات نیز با توجه به شرایط محیطی کاربر سازگار می شود. سیستم پیشنهادی، الگوی مناسبی از خود مراقبتی در محیط شهری با آلودگی بالا را ارائه می دهد.
    کلید واژگان: بافت آگاهی, فراگستر, توصیه گر, آلودگی هوا}
    Bibi Mariam Sajadianjaghargh, Alireza Vafaei Nezhad, Ali Asghar Alesheikh
    The ubiquity of mobile devices, such as smart phones and tablets, has contributed to the development of pervasive systems, including navigation and health systems. The main characteristicsof pervasive systems are the necessity of dynamic reconfiguration and proper adaption to the continuous changes in different contexts. The existence of dynamic capabilities has been considered in the design and implements of a context aware system, including context acquisition, context understanding and computing, decision making, and context presentation.Context acquisition: This domain of research focuses on using personal sensing devices which measure various parameters by means of portable devices and save them on the external/internal database for further processing. The aim of researches is collecting, sharing, and/or reusing data in other applications or through a web interface.Context understanding and computing: The most works are in the field of context monitoring, data management, understanding or computing. The ability to automated context reasoning about various types of contexts and their properties are considered using various context models and algorithms. Most applications are customized for a specific case such as air pollution, tourist, navigation, and health-care. Context presentation: This category of research has commonly focused on context-aware application adaptation. The adaption happens between the real world, the map and user’s location and orientation. A number of studies have been carried out in the field of tourist guides or navigation adapting the presentation style to the changing requirements of the user.Most studies in ubiquitous health care have only been carried out in a small number of areas and using external portable sensors and developing applications on mobile phones. A major problem with this kind of applications is collecting and sharing data, monitoring, or reasoning without having an active role in decision making in different environmental conditions. Using external tools such as portable devices is costly and limits using the systems.
    This paper has focused on design and implementation of a context aware ubiquitous system which has been customized for severe environmental conditions (in particular, air pollution). Air pollution is a spatio-temporal phenomenon and it causes changes in health conditions and it increases mortality. Eclipse Kepler software, java, PHP programming language and MySQL and SQLit database and also Google Maps API was used in this research. The proposed system design approach is based on distributed architecture in the portion of data collection and processing. Data collecting is done by means of software and hardware sensors. The context aware system is able to automatically identify the user’s context and represent required data and information after computing and reasoning. Contexts based on their impact on the decision-making process can be divided into two categories: passive and active contents.We used an active context in the research such as time, location, traffic, direction, air pollution. Collecting required data is done automatically with high speed and accuracy, and data plays an active role in decision making. In the system architecture, servers were embedded to enter data automatically and only data relating to health conditions is entered manually. Processing environment was divided into two parts, in case of abounding calculations, processing is transferred to the server so that only light processing is performed on the client. At every stage of the process, the user interface provided outputs in the form of recommendations and notifications. The system represents user-friendly environment. Context information can be posted on the process server and retrieved from the history. The proposed system can become an important tool to enable patients to be aware of air pollution conditions, not only to be applied in managing and monitoring their health information, but also in decision making, finding the best solution in severe environment, sharing data and communicating with family and doctor. The application represents suitable solution for solving the shortest path problem according to spatial-temporal and traffic condition. In fact, the path with the lowest level of air pollution is chosen as the best path.The system indirectly encourages greater use of the ubiquitous health system and motivates patients to acquire an active role in their health management and helps them to improve their health condition. The information collected and posted on the server can be reused in professional station and it presents useful information to health experts. We broadly concern about patients’ privacy in the design of the system.
    Keywords: Context aware, Ubiquitous, Recommender, Air pollution}
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال