alyaa abdulhussein al-joda
-
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 1957 -1964
Medical data mining has been a widespread data mining area of late. Mainly, diagnosing cancers is one of the most important topics that many researchers studied to develop intelligent decision support systems to help doctors. In this research, three different classifiers are used to improve the performance in terms of accuracy. The classifiers are Support Vector Machine (SVM), Adaptive Boosting (AdaBoost), and Random forests (RF). Two machine learning repository datasets are used to evaluate and verify the classification methods. Classifiers are trained using the 10-fold crossvalidation strategy, which splits the original sample into training and testing sets. In order to assess classifier efficiency, accuracy (AC), precision, recall, specificity, F1, and area under the curve are used (AUC). The Experiments showed that the AdaBoost classifier’s achieved an accuracy of 100% which is superior in both datasets in comparison with SVM and RF with AC of 97%. The accuracy is also compared with another study from the previous work that uses the same datasets, and the results demonstrated that the current research has better accuracy than the other study.
Keywords: Classifier, AdaBoost, SVM, RF, ROC, Breast Cancer
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.