e. mohammadinasab
-
در این تحقیق، از طریق مطالعه رابطه ساختار-فعالیت به پیش بینی مقادیر سمیت مشتقات کربوکسیلیک اسید پرداخته شده است. ابتدا مقادیر LD50 برای مجموعه ای از ترکیبات مورد مطالعه با استفاده از منابع علمی معتبر استخراج گردید و ساختار آنها به کمک نرم افزار گوس ویو 05 رسم شده و با نرم افزار گوسین09 به روش هارتری فاک و سری پایه G21-3 بهینه شدند. سپس با استفاده از نرم افزار دراگون توصیف گرهای مولکولی استخراج گردیدند. به کمک ژنتیک الگوریتم و روش برگشتی توصیف گرهای نامناسب حذف شده و بهترین آنها برای مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورد استفاده قرار گرفت. دقت پیش بینی مدل نهایی توسط ضرایب آماری مورد بحث قرار گرفت. اعتبارسنجی تقاطعی و نیز اعتبارسنجی خارجی مدل های پیش بینی همبستگی بسیار بالا را بین مقادیر تجربی و مقادیر پیش بینی گروه های آموزش آزمون و اعتبارسنجی در روش شبکه عصبی مصنوعی نشان داد. مشخص گردید که روش شبکه عصبی مصنوعی با خطای کمتر و ضریب تعیین بالاتر نسبت به روش رگرسیون خطی چندگانه از برتری قابل توجه ای برخوردار می باشد. مدل پیشنهادی می تواند برای پیش بینی log(LD50) ترکیبات جدید کربوکسیلیک اسید مفید واقع گردد.
کلید واژگان: سمیت روش رگرسیون خطی چندگانه, شبکه عصبی مصنوعی, مشتقات کربوکسیلیک اسیدIn this research, Quantitative Structure–Activity Relationship (QSAR) study has been used for prediction of toxicity values of carboxylic acid derivatives. Firstly, the toxicity (LD50) values of data set of studied compounds were taken from the scientific web book and the their structures were drawn with the Gauss view 05 program and optimized at Hartree–Fock level of theory and 3-21G basis set by Gaussian 09 software. Then the dragon software was used for the calculation of molecular descriptors. The unsuitable descriptors were deleted with the aid of the genetic algorithm (GA) and backward techniques, and the best descriptors were used for multiple linear regression (MLR) and artificial neural network (ANN) models. The prediction accuracy of the final model was discussed using the statistical parameters. Leave-one-out cross-validation and external test set of the predictive models demonstrated a high-quality correlation between the observed and predicted toxicity values of all, training, test and validation sets in GA-ANN method. The model by ANN algorithm due to the lower error and higher regression coefficients was clearly superior to those models by MLR algorithm. The proposed model may be useful for predicting log LD50 of new compounds of similar class.
Keywords: Toxicity, Multiple linear regression method, Artificial neural network, Carboxylic acid derivatives -
در دهه های گذشته، استفاده از روش های محاسباتی با پارامترهای اعتبار سنجی دقیق برای تعیین خواص فیزیکی- شیمیایی ترکیبات، به عنوان جایگزین اقتصادی و زیست محیطی باصرفه جویی در زمان و حذف هزینه های بالا مورد توجه بسیاری از پژوهشگران قرارگرفته است. در این مطالعه، به بررسی ارتباط مقادیر لگاریتمی سمیت LD50 (log (LD50)(molkg-1))با توصیف گرهای مولکولی برای 60 نوع از مشتقات آنیلین (شامل ترکیبات علف کش) پرداخته شده است. بعد از ترسیم ساختار این ترکیبات با استفاده از نرم افزار 05 Gauss View و بهینه سازی آن ها با کمک نرم افزار 09 Gaussian با روش **G++311-6/B3LYP توصیف گرهای مولکولی استخراج شدند. به کمک ژنتیک الگوریتم، توصیف گرهای نامناسب حذف شده و بهترین آن ها برای مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورداستفاده قرار گرفتند. نتایج حاصل از این مدل نشان داد که روش شبکه عصبی مصنوعی با کمترین خطا و بالاترین ضریب تعیین نسبت به روش رگرسیون خطی چندگانه برای پیش بینی لگاریتم سمیت (molkg-1)LD50 مشتقات آنیلین از برتری بالایی برخوردار است.
کلید واژگان: متوسط دوز کشنده, روش رگرسیون خطی چندگانه, شبکه عصبی مصنوعی, مشتقات آنیلینIn recent decades, computational methods with regard to accurate validation parameters for the determination of the physical- chemistry properties of compounds have been considered by many researchers and have been used as an economic and environmental alternative to saving time and eliminating high costs. In this study, the relationship between the logarithmic values of LD50</sub>,) log (LD50</sub>)(molkg-1</sup>) and molecular descriptors has been investigated for 60 types of aniline derivatives(including some herbicides compounds). At first, the structure of the compounds were drawn by Gauss view05 software and optimized using Gaussian 09 software with B3LYP/6-311++G** method, and then were extracted molecular descriptors. Then inappropriate descriptors were eliminated by genetic algorithm method and the best ones were used for multiple linear regression (MLR) and artificial neural networks (ANN) models. The results showed that the ANN method with the lowest error and the highest coefficient of determination was higher than the MLR method to predicting the log(LD50</sub>)(molkg-1</sup>) of studied aniline derivatives.
Keywords: LD50, Multiple Linear Regressionmethod, Artificial Neural Network, Aniline Derivatives
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.