فهرست مطالب نویسنده:
ezedin mohajerani
-
IntroductionRegarding the limited ability of the damaged cartilage cells to self-renew, which is due to their specific tissue structure, subtle damages can usually cause diseases such as osteoarthritis. In this work, using laser photobiomodulation and an interesting source of growth factors cocktail called the synovial fluid, we analyzed the chondrogenic marker genes in treated hair follicle dermal papilla cells as an accessible source of cells with relatively high differentiation potential.MethodsDermal papilla cells were isolated from rat whisker hair follicle (Rattus norvegicus) and established cell cultures were treated with a laser (gallium aluminum arsenide diode Laser (λ=780 nm, 30 mW) at 5 J/cm2), the synovial fluid, and a combination of both. After 1, 4, 7, and 14 days, the morphological changes were evaluated and the expression levels of four chondrocyte marker genes (Col2a1, Sox-9, Col10a1, and Runx-2) were assessed by the quantitative real-time polymerase chain reaction.ResultsIt was monitored that treating cells with laser irradiation can accelerate the rate of proliferation of cells. The morphology of the cells treated with the synovial fluid altered considerably as in the fourth day they surprisingly looked like cultured articular chondrocytes. The gene expression analysis showed that all genes were up-regulated until the day 14 following the treatments although not equally in all the cell groups. Moreover, the cell groups treated with both irradiation and the synovial fluid had a significantly augmented expression in gene markers.ConclusionBased on the gene expression levels and the morphological changes, we concluded that the synovial fluid can have the potential to make the dermal papilla cells to most likely mimic the chondrogenic and/or osteogenic differentiation, although this process seems to be augmented by the irradiation of the low-level laser.Keywords: Hair follicle dermal papilla cells, Differentiation, Laser photobiomodulation, Synovial fluid, Cartilage
-
IntroductionTrichophyton rubrum is one of the most common species of dermatophytes which affects superficial keratinous tissue. It is not especially virulent but it can be responsible for considerable morbidity. Although there are different therapeutic modalities to treat fungal infections, clinicians are searching for alternative treatment because of the various side effects of the present therapeutic methods. As a new procedure, Laser therapy has brought on many advantages in clinical management of dermatophytes. Possible inhibitory potential of laser irradiation on fungal colonies was investigated invitro in this study.MethodsA total of 240 fungal plates of standard size of trichophyton rubrum colonies that had been cultured from the lesions of different patients at the mycology laboratory, were selected. Each fungal plate was assigned as control or experimental group. Experimental plates were irradiated by a laser system (low power laser or different wavelength of high power laser). The effects of different laser wavelengths and energies on isolated colonies were assessed. After laser irradiation, final size of colonies was measured on the first, the 7th and the 14th day after laser irradiation.ResultsAlthough low power laser irradiation did not have any inhibitory effect on fungal growth, the Q-Switched Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser 532nm at 8j/cm2, Q-Switched Nd:YAG laser 1064nm at 4j/cm2 to 8j/cm2 and Pulsed dye laser 595nm at 8j/cm2 to 14j/cm2 significantly inhibited growth of trichophyton rubrum in vitro.ConclusionQ-Switched Nd:YAG 532nm at 8j/cm2, Q-Switched Nd:YAG laser 1064nm at 4j/cm2 to 8j/cm2 and pulsed dye laser (PDL) 595nm at 8j/cm2 to 14j/cm2 can be effective to suppress trichophyton rubrum growth.Keywords: laser, dermatophyte, Q, Switched, Nd:YAG lasers, PDL
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.