به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

fahimeh ghasemian

  • Somaye Norouzi, Samane Sistani, Maryam Khoshkhui, Reza Faridhosseini, Payam Payandeh, Fahimeh Ghasemian, Leila Ahmadian, Mohammadhosein Pourasad, Farahzad Jabbari Azad *
    Background

    As a common disease among people of almost any age, allergic rhinitis has many adverse effects such as lowering the quality of life and efficiency at work or school. Considering these conditions and the collection of large amounts of data, the present research was conducted on allergic rhinitis and asthma patients' data to extract the common symptoms of these diseases using cluster analysis and the k-means algorithm.

    Materials and Methods

    The present cross-sectional research was conducted in Mashhad city. The inclusion criteria were affliction with one or two respiratory allergy diseases diagnosed by an allergy specialist through clinical history taking and physical examination. A researcher-made checklist was used in the present study for data collection. Then, the K-means algorithm's cluster analysis model was conducted to extract clusters (WEKA software (3, 6, 9)).

    Results

    Overall, 1,231 patients met the inclusion criteria. The result of the Cluster analysis consisted of  1: Cluster 1 in allergic rhinitis consisted of 702 patients, and cluster 2 consisted of 382 patients. 2: 46 asthma patients were assigned to cluster 1 and 23 to cluster 2. 3: Also, 60 asthma and allergic rhinitis patients were assigned to cluster 1 and 19 to cluster 2. The most common symptoms in all patients were rhinorrhea, sneezing, nasal congestion, and itchy nose.

    Conclusion

    Overall, Salsola kali was the most common allergen in allergic rhinitis and asthma patients. Also, the most common symptoms in patients are rhinorrhea, sneezing, itchy nose, and nasal congestion. This study can help physicians diagnose allergic rhinitis and asthma in geographical areas with a high prevalence of Salsola kali.

    Keywords: Allergic rhinitis, Asthma, Data Mining, cluster analysis
  • مریم قنواتی نسب، مهدیه قزوینی*، فهیمه قاسمیان
    امروزه به دلیل اتصال تلفن های همراه هوشمند به اینترنت و وجود قابلیت ها و امکانات مختلف در این تلفن ها، حفظ امنیت این دستگاه ها به یک چالش مهم تبدیل شده است. چرا که معمولا در این دستگاه ها انواع داده های خصوصی که مرتبط با حریم شخصی افراد است ثبت و ذخیره می شود. در سال های اخیر این دستگاه ها مورد هدف یکی از خطرناک ترین حملات سایبری قرار گرفته اند که بات نت نام دارد. بات نت ها توانایی انجام عملیات مخربی چون ربودن و استراق سمع و حملات انکار سرویس را دارند. از این رو شناسایی به موقع بات نت ها تاثیر زیادی در حفظ امنیت تلفن های همراه دارد. در این مقاله روشی جدید برای شناسایی بات نت ها از برنامه های سالم اندروید و همچنین تشخیص نوع بات نت از میان 14 نوع مختلف از خانواده بات نت ها ارایه شده است. در این روش ابتدا با استفاده از مهندسی معکوس، لیست مجوزهای برنامه استخراج شده، سپس بر اساس این لیست مجوز ها تصویر معادل برنامه ایجاد می شود. به این ترتیب مجموعه ای از تصاویر بدست می آید که با استفاده از شبکه عصبی کانولوشنال ارایه شده، این تصاویر طبقه بندی و نوع برنامه کاربردی مشخص می شود. نتایج حاصل از مقایسه و ارزیابی این روش با روش های سنتی یادگیری ماشین چون ماشین بردار پشتیبان و درخت تصمیم نشان داد که روش ارایه شده کارایی بالاتری در تشخیص انواع بات نت ها و جداسازی آن از برنامه های سالم دارد
    کلید واژگان: بات نت, امنیت تلفن همراه, امنیت, بات نت تلفن همراه, تشخیص بات نت, شبکه کانولوشن
    Maryam Ghanavati Nasab, Mahdieh Ghazvini *, Fahimeh Ghasemian
    Smartphones are now well integrated with advanced capabilities and technologies such as the Internet. Today, due to the facilities and capabilities and the widespread use of smart mobile devices, mobile security has become a vital issue worldwide. Smartphones are not properly protected compared to computers and computer networks, and users do not consider security updates. Recently, mobile devices and networks have been targeted by one of the most dangerous cyber threats known as botnets. Mobile Bantent An enhanced example of Boutons has the ability to perform malicious operations such as denial of service attacks, data theft, eavesdropping, and more. Bunters use three communication protocols: HTTP, SMS and Bluetooth to communicate with each other; So when users are not connected to the Internet, botnets are able to communicate with each other. In this study, to identify mobile batonet from 14 Android baton families, including 1932 samples of Android mobile devices applications and 4304 samples of safe and secure Android mobile devices applications have been used. Application permissions were extracted for reverse engineering to automatically classify and detect types of botnets, then based on these permissions, each application was converted to an equivalent image using the proposed method. Labeled images were then used to train convolutional neural networks. The results of evaluation and comparison of this method with classical methods including backup vector machine and decision tree showed that the proposed method is able to achieve higher efficiency in detecting different types of botnets and separating it from healthy programs
    Keywords: Botnet, mobile security, security, mobile botnet, Botnet Detection, convolutional network
  • Mahdieh Montazeri, Ali Afraz, Raheleh Mahboob Farimani, Fahimeh Ghasemian*

    Introduction:Lung cancer is the second most commoncancer for men and women. Using natural language processing to automatically extract information from text, lead to decrease labor of manual extraction from large volume of text material and save time. The aim of this study is to systematically review of studies which reviewed NLP methods in diagnosing and staging lung cancer.Material and Methods:PubMed, Scopus, Web of science, Embase was searched for English language articles that reported diagnosing and staging methods in lung cancer Using NLP until DEC 2019. Two reviewers independently assessed original papers to determine eligibility for inclusion in the review.Results: Of 231 studies, 7 studies were included. Three studies developed a NLP algorithm to scan radiology notes and determine the presence or absence of nodules to identify patients with incident lung nodules for treatment or follow-up. Two studies used NLP to transform the report text, including identification of UMLS terms and detection of negated findings to classifying reports, also one of them used an SVM-based text classification system for staging lung cancer patients. All studies reported various performance measures based on the difference between combinations of methods.Most of studies have reported sensitivity and specificity ofthe NLP algorithm for identifying the presence of lung nodules.Conclusion:Evaluation of studies in diagnosing and staging methods in lung cancer using NLP shows there is a number of studies on diagnosing lung cancer but there are a few works on stagingthat. In some studies, combination of methods was considered and NLP isolated was not sufficient for capturing satisfying results. There are potentials to improve studies by adding other data sources, further refinement and subsequent validation.

    Keywords: Lung Cancer, Natural Language Processing, Diagnose, Staging
  • Khadijeh Moulaei, Fahimeh Ghasemian, Kambiz Bahaadinbeigy *, Roghayeh Ershad Sarbi, Zahra Mohamadi Taghiabad
    If Coronavirus (COVID-19) is not predicted, managed, and controlled timely, the health systems of any country and their people will face serious problems. Predictive models can be helpful in health resource management and prevent outbreak and death caused by COVID-19. The present study aimed at predicting mortality in patients with COVID-19 based on data mining techniques. To do this study, the mortality factors of COVID-19 patients were first identified based on different studies. These factors were confirmed by specialist physicians. Based on the confirmed factors, the data of COVID-19 patients were extracted from 850 medical records. Decision tree (J48), MLP, KNN, random forest, and SVM data mining models were used for prediction. The models were evaluated based on accuracy, precision, specificity, sensitivity, and the ROC curve. According to the results, the most effective factor used to predict the death of COVID-19 patients was dyspnea. Based on ROC (1.000), accuracy (99.23%), precision (99.74%), sensitivity (98.25%) and specificity (99.84%), the random forest was the best model in predicting of mortality than other models. After the random forest, KNN5, MLP, and J48 models were ranked next, respectively. Data analysis of COVID-19 patients can be a suitable and practical tool for predicting the mortality of these patients. Given the sensitivity of medical science concerning maintaining human life and lack of specialized human resources in the health system, using the proposed models can increase the chances of successful treatment, prevent early death and reduce the costs associated with long treatments for patients, hospitals and the insurance industry.
    Keywords: Mortality, COVID-19, Data mining, Prediction
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال