فهرست مطالب نویسنده:
faustino bonutti
-
IntroductionIn Yttrium-90 SPECT imaging, the energy window and collimator used during projection acquisition can significantly affect image quality. In this work, we used a new and independent method to verify previous results, which suggest suitable energy around 130 keV.Material and MethodsWe used Siemens Symbia SPECT-CT system fitted with High Energy General Purpose (HEGP), Medium Energy General Purpose (MEGP), and Low Energy High Resolution (LEHR) to acquire data from NEMA IEC PET Body Phantom filled with 90Y chloride. ISO-counting curve is a new method analysed in this study to evaluate the adequate parameters for 90Y SPECT imaging.ResultsHEGP collimator was the most suitable for acquisitions of 90Y bremsstrahlung radiation from the point of view of the correct volume reproduction. ISO-counting analyses have shown that for the bigger phantom spheres, the optimum acquisition energy is centered on 130 keV.ConclusionThe ISO-counting curve method is consistent to previous studies’ results and can help to improve image quality.Keywords: Bremsstrahlung Yttrium, 90 NEMA IEC PET Body Phantom ISO, Counting Curves
-
IntroductionDetecting scattered photons in the photo peak window degrades the image contrast and quantitative accuracy of single-photon emission computed tomography (SPECT) imaging. This study aimed to determine optimal main- and sub-energy windows for Triple Energy Window (TEW) in In-111.Material and MethodsWe used the simulating medical imaging nuclear detectors (SIMIND) program to simulate the Siemens SYMBIA gamma camera equipped with a medium energy (ME) collimator. We also used the SIMIND Monte Carlo program to generate theIn-111SPECT projection data of the Jaszczak phantom. The phantom consisting of six spheres with different diameters (9.5, 12.7, 19.1, 15.9, 25.4, and 31.8 mm) was used to evaluate the image contrast. Geometric, scatter, and penetration fraction, point spread functions, and contrast curves were drawn and compared.ResultsThe results showed that the 171keVphotopeak compared to the 245keVphotopeak yielded the best results with an ME collimator when the TEW scatter correction method was applied. The reason can be the large amount of scatter and penetration from the photo peak and the collimator for the 245keVphotopeak window.ConclusionWith the TEW scatter correction method, it is better to use a 171keVphotopeak window because of its better spatial resolution and image contrast.Keywords: SPECT Contrast In, 111 SIMIND Program
-
IntroductionIn yttrium-90 imaging, image quality is highly dependent on the selection of energy window and collimator design becausetheY-90 bremsstrahlung photons have a continuous and broad energy distribution. The current study aimed to optimize the bremsstrahlung energy window setting and collimator for the improvement of both resolution and sensitivity.Material and MethodsIn the present study, simulation of medical imaging nuclear detectors (SIMIND) Monte Carlo program was used to simulate Siemens Medical System Symbia. The SIMIND was utilized to generate the Y-90 bremsstrahlung single-photon emission computed tomography (SPECT) projection of the point source. Six energy windows settings and two collimators denoting medium energy and high energy were used in order to assess the effect of the energy window on the resolution.ResultsThe experimental measurements and simulation results showed a similar pattern in the point spread functions with the energy window. The simulation data indicated that the geometric component reached 73%for the energy window within the range of51-120keVusingthe high-energy (HE) collimator. In addition, the obtained results showed that the full width at half maximum (FWHM) and full width at tenth maximum (FWTM)(FWHM=7mm and FWTM=35mm)were higher in this window in comparison to those reported for other windows.ConclusionAccording to the obtained results of the present study, the optimal energy window for Y-90 bremsstrahlung SPECT imaging was within the range of 51-120 keV. The obtained optimal energy window and optimal HE collimator had the potential to improve the image resolution and sensitivity of Y-90 SPECT imagesKeywords: 90 SPECT imaging Monte Carlo
-
IntroductionIn radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method using the SIMIND Monte Carlo simulation code in Gadolinium-159 (Gd-159) imaging.Material and MethodsThe energy window was set for various main energy window widths (i.e., 10%, 15%, and 20%) and sub-energy window widths (i.e., 3 and 6 keV).Siemens Medical System Symbia fitted with a high-energy collimator was used with Gd-159 point source positioned at seven locations inside the cylindrical water phantom. A comparison was made between the true primary to total ratio (calculated by SIMIND) and the primary to total ratio estimated using TEW method.ResultsThe findings of this study showed that 20% of the main energy windows with 3 and 6 keV sub-energy windows were optimal for the implementation of the TEW method in Gd-159.ConclusionAccording to the results, the optimal energy windows for Gd-159 scintigraphy were the sub-energy windows of 3 and 6 keV. These findings could be helpful in the quantification of Gd-159 imaging.PurposeIn radio-nuclides imaging, object scatter is one of major factors which leads to degradation of image quality. Therefore, the correction of scattered photons has a great impact to improve the image quality. The aim of this work was to determine the main and sub-energy windows for the triple energy window (TEW) scatter correction method using Monte Carlo simulation SIMIND code for Gadolinium-159 (Gd-159) imaging.MethodsEnergy window was set for various main energy window width (10,15 and 20%) and sub energy window width (3 and 6 keV). Siemens Medical System Symbia fitted with High Energy collimator (HE) was imaged with Gd-159 point source positioned at seven locations inside cylindrical water phantom. The true primary to total ratio (calculated by SIMIND) and the primary to total ratio estimated using TEW method were compared.ResultsA 20% of main energy window with 3 and 6 keV sub-energy windows were found to be optimal for implementation of the TEW method in Gd-159.ConclusionThe obtained results provide the optimal energy window for Gd-159 scintigraphy data and will aid the quantification of Gd-159 imaging.Keywords: Gd-159, Monte Carlo Simulation, object scatter, SPECT
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.