به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

hamid sharini

  • هانیه علی میری ده باغی، کریم خوش گرد، حمید شرینی *، سمیرا جعفری خیرآبادی، فرهاد نعلینی
    زمینه و هدف

    استفاده از الگوریتم های هوش مصنوعی برای کمک به تشخیص صحیح در تصاویر پزشکی یکی از مهم ترین کاربردهای این فناوری در حوزه تصویربرداری است. در این پژوهش امکان جایگزینی رادیوگرافی ساده قفسه سینه به منظور تشخیص پنوموتوراکس در مواردی که به طور معمول CT درخواست می گردد، با هدف کاهش دوز دریافتی بیماران، موردمطالعه قرار گرفت.

    روش بررسی

    مطالعه حاضر یک مطالعه تحلیلی بوده و در بازه زمانی آذر 1401 تا خرداد 1402 در دانشگاه علوم پزشکی کرمانشاه انجام شده است. داده های مورداستفاده در این تحقیق از پرونده های 350 فرد مشکوک به پنوموتوراکس استخراج شده است. تصاویر جمع آوری شده در نرم افزار MATLAB تحت پیش پردازش قرار گرفتند. سپس سه الگوریتم یادگیری ماشین، شامل رگرسیون لجستیک شبکه الاستیک (LENR)، رگرسیون لجستیک لاسو (LLR) و بوستینگ تطبیقی (AdaBoost) روی داده ها به کار گرفته شد. برای ارزیابی عملکرد این مدل ها از معیارهای دقت، صحت، حساسیت، ویژگی، سطح زیر منحنی مشخصه عملکرد سیستم، امتیاز F1 و طبقه بندی نادرست استفاده شد.

    یافته ها

    در مدل AdaBoost مقدار دقت در تصاویر رادیوگرافی و CT به ترتیب 99/17% و /98/27% محاسبه شد. مقدار AUC برای همین مدل در تصاویر رادیوگرافی برابر 100% و در تصاویر سی تی اسکن برابر 96/96% به دست آمد.

    نتیجه گیری

    باتوجه به معیارهای موردارزیابی در مطالعه، دو مدل LLR و AdaBoost دارای عملکرد مشابهی در تصاویر رادیوگرافی و CT از نظر تشخیص افراد با و بدون پنوموتوراکس هستند، به گونه ای که می توان این عارضه را با دقت بالایی با استفاده از تکنیک های یادگیری ماشین در تصاویر رادیوگرافی نیز تشخیص داد و به این ترتیب از دریافت دوز پرتویی بالا ناشی از انجام CT در بیمار اجتناب نمود.

    کلید واژگان: هوش مصنوعی, یادگیری ماشین, پنوموتوراکس
    Hanieh Alimiri Dehbaghi, Karim Khoshgard, Hamid Sharini *, Samira Jafari Khairabadi, Farhad Naleini
    Background

    The use of artificial intelligence algorithms to help with accurate diagnosis in medical images is one of the most important applications of this technology in the field of medical imaging. In this research, the possibility of replacing simple chest radiography instead of CT scan using machine learning models to detect pneumothorax was investigated in cases where CT is usually requested.

    Methods

    This study is analytical and was conducted from November 2022 to May 2023 at Kermanshah University of Medical Sciences. The data used in this research was extracted from the files of 350 patients suspected of pneumothorax. The collected images were pre-processed in MATLAB software. Then, three machine learning algorithms, including Logistic elastic net regression (LENR), Logistic lasso regression (LLR) and Adaptive Boosting (AdaBoost) were used. To evaluate the performance of these models, the criteria of precision, accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), F1 score, and misclassification were used.

    Results

    In the AdaBoost model, the accuracy value in radiographic and CT images was calculated as 98.89% and 98.63%, respectively, and the precision value was calculated as 99.17% and 98.27%, respectively. In radiographic images, the AUC value for AdaBoost model was calculated as 100% and in CT scan images as 96.96%. The F1 score for the same model in radiographic was 99% and in CT images was 98.68%. The specificity value for the AdaBoost model was calculated as 99.45% in radiographic images and 94.67% in CT scan images. In the LLR model, the AUC value for radiographic and CT scan images was 99.87% and 99.02%, respectively.

    Conclusion

    According to the criteria evaluated in the present study, two LLR and AdaBoost models have similar performance in radiographic and CT images in terms of pneumothorax detection ability, so that this complication can also be diagnosed with high precision level using machine learning techniques on the radiographic images and thus receiving higher levels of radiation doses due to CT scan can be avoided in these patients.

    Keywords: artificial intelligence, machine learning, pneumothorax
  • رضوان صفری، حمید شرینی، مهدی خدامرادی، میثم سیاه منصوری*
    سابقه و هدف

    بی خوابی یک اختلال شایع است که از پیامدهای منفی آن افت کیفیت زندگی است. این مطالعه با هدف، بررسی تاثیر محرومیت از خواب بر حافظه، در مغز افراد جوان و سالمند با استفاده از تصویربرداری fMRI، انجام پذیرفت.

    مواد و روش ها:

     در این مطالعه گذشته نگر، داده های 40 فرد سالم (17 نفر جوان و 23 نفر مسن) که در دانشگاه استهلکلم تصویر برداری fMRI شده بودند از سایت OpenNeuro اخذ شد. افراد مورد مطالعه، با یک دوره کم خوابی یک ماهه مواجه بودند (در طول آزمایش 3 ساعت زودتر از زمان معمول بیدار می شدند). پیش پردازش برای حذف آرتیفکت و نویز انجام شد و در نهایت پردازش داده ها به منظور استخراج نقشه فعالیت مغزی با تمرکز بر نواحی مغزی مرتبط با حافظه در افراد مسن و جوان انجام گردید.

    یافته ها:

     نتایج نشان داد که فعالیت اکثر نواحی مغزی مرتبط با حافظه، در اثر بی خوابی کاهش یافت. در گروه جوان تعداد 17 اتصال عملکردی در ابتدای مطالعه به دست آمد، اما این تعداد فقط به یک اتصال، بعد از دوره بی خوابی کاهش یافت. در آغاز مطالعه، در گروه مسن تعداد 7 اتصال عملکردی استخراج شد. این تعداد بعد از دوره بی خوابی به 4 اتصال عملکردی کاهش یافت (سطح معنی داری 0/05 <p).

    استنتاج

    آنالیز نقشه مغزی شامل ارتباطات و میزان فعالیت نواحی مرتبط با حافظه، نشان داد که محرومیت از خواب، بر مغز افراد جوان و سالمند تاثیر دارد. نتایج مطالعه حاضر می تواند راه گشای مطالعات آتی برای شناخت اثر بی خوابی بر حافظه و مغز باشد.

    کلید واژگان: حافظه, محرومیت از خواب, فعالیت نواحی مغز, ارتباطات عملکردی مغز, تصویربرداری عملکردی تشدید مغناطیسی
    Rezvan Safari, Hamid Sharini, Mehdi Khodamoradi, Meysam Siyah Mansoory*
    Background and purpose

    Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI).

    Materials and methods

    In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) who had a one-month sleep deprivation period (during the experiment they woke up three hours earlier than usual) were obtained. Then, pre-processing was done to remove artifacts and noise. Finally, data processing was completed in order to extract the brain activity map focusing on brain areas related to memory.

    Results

    Findings showed that the brain activity of most areas are reduced due to insomnia. In the young group, 17 functional connections were obtained at the beginning of the study which decreased to only one connection after the insomnia period. In older adults there were seven connections at the beginning of the study that decreased to four after the insomnia period (P< 0.05).

    Conclusion

    Brain map analysis, including connections and activity levels of memory-related areas, showed that sleep deprivation affects the brains of young and old people. Our findings can pave the way for future studies to understand the effect of insomnia on memory and brain.

    Keywords: memory, sleep deprivation, brain activity, brain connectivity, functional magnetic resonance imaging
  • Maziar Jalalvandi, Nader Riyahi Alam *, Hamid Sharini, Hasan Hashemi, Mohadeseh Nadimi
    Background
    fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity. This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity in a completely non-aggressive manner.
    Objective
    The present study has been designed to investigate and evaluate the brain cortex activities during imagining of the execution of wrist motor tasks by comparing fMRI and fNIRS imaging methods.
    Material and Methods
    This novel observational Optical Imaging study aims to investigate the brain motor cortex activity during imagining of the right wrist motor tasks in vertical and horizontal directions. To perform the study, ten healthy young right-handed volunteers were asked to think about right-hand movements in different directions according to the designed movement patterns. The required data were collected in two wavelengths, including 845 and 763 nanometers using a 48 channeled fNIRS machine.
    Results
    Analysis of the obtained data showed the brain activity patterns during imagining of the execution of a movement are formed in various points of the motor cortex in terms of location. Moreover, depending on the direction of the movement, activity plans have distinguishable patterns. The results showed contralateral M1 was mainly activated during imagining of the motor cortex (p <0.05).
    Conclusion
    The results of our study showed that in brain imaging, it is possible to distinguish between patterns of activities during wrist motion in different directions using the recorded signals obtained through near-infrared Spectroscopy. The findings of this study can be useful in further studies related to movement control and BCI.
    Keywords: Hemodynamics, Near-Infrared, Motor Cortex, Functional Neuroimaging
  • Hamid Sharini, Shokufeh Zolghadriha, Nader Riyahi Alam *, Maziar Jalalvandi, Hamid Khabiri, Hossein Arabalibeik, Mohadeseh Nadimi
    Background
    Functional Magnetic resonance imaging (fMRI) measures the small fluctuation of blood flow happening during task-fMRI in brain regions.
    Objective
    This research investigated these active, imagery and passive movements in volunteers design to permit a comparison of their capabilities in activating the brain areas.
    Material and Methods
    In this applied research, the activity of the motor cortex during the right-wrist movement was evaluated in 10 normal volunteers under active, passive, and imagery conditions. T2* weighted, three-dimensional functional images were acquired using a BOLD sensitive gradient-echo EPI (echo planar imaging) sequence with echo time (TE) of 30 ms and repetition time (TR) of 2000 ms. The functional data, which included 248 volumes per subject and condition, were acquired using the blocked design paradigm. The images were analyzed by the SPM12 toolbox, MATLAB software.
    Results
    The findings determined a significant increase in signal intensity of the motor cortex while performing the test compared to the rest time (p < 0.05). It was also observed that the active areas in hand representation of the motor cortex are different in terms of locations and the number of voxels in different wrist directions. Moreover, the findings showed that the position of active centers in the brain is different in active, passive, and imagery conditions.
    Conclusion
    Results confirm that primary motor cortex neurons play an essential role in the processing of complex information and are designed to control the direction of movement. It seems that the findings of this study can be applied for rehabilitation studies.
    Keywords: Functional MRI, Active Movement, Passive Movement, Imaginary Movement, Motor Cortex, Rehabilitation, Brain-Computer Interfaces, Wrist Movement
  • Mansour Rezaei, Ehsan Zereshki*, Soodeh Shahsavari, Mohammad Gharib Salehi, Hamid Sharini
    Background

    Alzheimer’s disease (AD) is the most common brain failure for which no cure has yetbeen found. The disease starts with a disturbance in the brain structure,then it manifests itselfclinically. Therefore,by timely,correct diagnosis of changes in the structure of the brain,theoccurrence of this disease or at least its progression can be prevented. Due to the fact that magneticresonance imaging (MRI) can be used to obtain very useful information from the brain,and alsobecause it is non-invasive,this method has been considered by researchers.Materials,

    Methods

    The data were obtained from an MRI database (MIRIAD) of 69 subjectsincluding 46 AD patients,23 healthy controls (HC). Individuals were categorized based on twocriteria including NINCDS-ADRAD,MMSE,as the gold standard. In this paper,we used thesupport vector machine (SVM),Bayesian SVM classifiers.

    Results

    Using the SVM classifier with Gaussian radial basis function (RBF) kernel,we distinguishedAD,HC with an accuracy of 88.34%. The most important regions of interest (ROIs) in this studyincluded right para hippocampal gyrus,left para hippocampal gyrus,right hippocampus,and lefthippocampus.

    Conclusion

    This study showed that the SVM model with Gaussian RBF kernel can distinguish ADfrom HC with high accuracy. These studies are of great importance in medical science. Based onthe results of this study

    Keywords: Alzheimer’s disease, Support vector machine, Machine learning, Magnetic resonanceimaging
  • Maziar Jalalvandi, Hamid Sharini, Yousef Naderi, Nader Riahi *
    Purpose
    Nowadays, the number of people diagnosed with movement disorders is increasing. Therefore, the evaluation of brain activity during motor task performance has attracted the attention of researchers in recent years. Functional Near-Infrared Spectroscopy (fNIRS) is a useful method that measures hemodynamic changes in the brain cortex based on optical principles. The purpose of this study was to evaluate the brain’s cortical activation in passive movement of the wrist.
    Materials and Methods
    In current study, the activation of the brain's motor cortex during passive movement of the right wrist was investigated. To perform this study, ten healthy young right-handed volunteers were chosen. The required data were collected using a commercial 48-channel continuous wave fNIRS machine, using two different wavelengths of 765 and 855 nm at 10 Hz sampling rate.
    Results
    Analysis of collected data showed that the brain's motor cortex during passive motion was significantly activated (p≤0.05) compared to rest. Motor cortex activation patterns depending on passive movement direction were separated. In different directions of wrist movement, the maximum activation was recorded at the primary motor cortex (M1).
    Conclusion
    The present study has investigated the ability of fNIRS to evaluate cortical activation during passive movement of the wrist. Analysis of recording signals showed that different directions of movement have specific activation patterns in the motor cortex.
    Keywords: Hemodynamic, Functional Near-Infrared Spectroscopy, Motor Cortex, Pasive Movement
  • Maziar Jalalvandi, Nader Riahi Alam, Hamid Sharini*
    Background

    Optical imaging has attracted the researcher’s attention in recent years as an uncompromising and efficient method to measure the changes in brain cortex activity. Functional Near-Infrared Spectroscopy (fNIRS) is a method that measures hemodynamic changes in the brain cerebral cortex based on optical principles.

    Objectives

    The current study aimed to evaluate the activities of the brain cortex during wrist movement using fNIRS.

    Methods

    In this study, the activity of the brain motor cortex was investigated during right wrist movement in 10 young righthanded volunteers. Data were collected using a 48-channel fNIRS device with two wavelengths of 855 nm and 765 nm. For this experiment, 20 channels were used and the sampling frequency was set at 10 Hz.

    Results

    Signal intensity in the motor cortex was significantly higher during movement than in the rest (P ≤ 0.05). The activation map of wrist movements was separated spatially in the motor cortex. The highest activity was recorded in the primary motor cortex (M1). There was a significant difference in the focus of the maximum activation of the brain between the four main directions.

    Conclusions

    It is possible to differentiate between different directions of movement using near-infrared signals. The presence of directional activation in the cerebral cortex helps confirm the notion that this part of the brain participates in the processing of complex information besides controlling the movement of different parts of the body.

    Keywords: Hemodynamic Responses, Optical Imaging, Functional Near-Infrared Spectroscopy (fNIRS), Brain Motor Cortex, WristMovemen
  • منصور رضایی، احسان زرشکی*، حمید شرینی، محمد غریب صالحی، فرهاد نعلینی
    بیماری آلزایمر متداول ترین بیماری زوال عقل است که به صورت نامحسوس پیش می رود و ابتدا ساختار بخشی از مغز را تخریب و سپس به صورت بالینی بروز پیدا می کند. می توان با تشخیص به موقع این تغییرات ساختاری مغز، از بروز این بیماری یا از پیشرفت آن جلوگیری کرد. هدف این مطالعه، تشخیص بیماری آلزایمر بر اساس تصویرسازی تشدید مغناطیسی مغز با استفاده از مدل ماشین بردار پشتیبان بود.
    مطالعه حاضر یک مطالعه تحلیلی از نوع مدلسازی است که در دانشگاه علوم پزشکی کرمانشاه، دانشکده بهداشت از اسفند 1 3 9 5 تا آذر 1 3 9 6 انجام شد. داده ها یک دیتاست به نام Miriad شامل تصویرسازی تشدید مغناطیسی مغز 6 9 فرد بود که در بیمارستان مرکزی لندن جمع آوری شده است. افراد به وسیله ی دو معیار به عنوان استاندارد طلایی به دو گروه سالم و آلزایمری تفکیک شده بودند. در این مقاله از مدل ماشین بردار پشتیبان با سه کرنل خطی، دوجمله ای و گوسین برای تفکیک بیماران از افراد سالم استفاده شد.
    با استفاده از مدل ماشین بردار پشتیبان با کرنل گوسین بیماران آلزایمری و افراد سالم با صحتی برابر 8 8 /3 4 % به درستی تفکیک شدند. مهمترین ناحیه ها برای بیماری آلزایمر سه ناحیه ی پاراهیپوکامپ جایروس راست، پاراهیپوکامپ جایروس چپ و هیپوکامپ راست بودند.
    کلید واژگان: بیماری آلزایمر, تصویرسازی تشدید مغناطیسی, ماشین بردار پشتیبان
    Mansour Rezaei, Ehsan Zereshki*, Hamid Sharini, Mohammad Gharib Salehi, Farhad Naleini
    Background
    Alzheimer's disease (AD) is the most common disorder of dementia, which has not been cured after its occurrence. AD progresses indiscernible, first destroy the structure of the brain and subsequently becomes clinically evident. Therefore, the timely and correct diagnosis of these structural changes in the brain is very important and it can prevent the disease or stop its progress. Nowadays, remark to this fact that magnetic resonance imaging (MRI) provides very useful and detailed information, and due to non-invasiveness, this method has been great interest to the researchers. The aim of this study was diagnosis of AD with MRI by support vector machine model (SVM).
    Methods
    This is an analytical and modeling research which done in School of Public Health, Kermanshah University of Medical Science, Iran, from February 2017 to November 2017. The data used in this study was a database named Miriad containing brain MRI of 69 individuals (46 Alzheimer's disease and 23 healthy subjects) that was collected at the central hospital in London. Individuals were categorized into two groups of healthy and Alzheimer's disease with two criteria: NINCDS-ADRAD and MMSE (as the golden standard). In this paper SVM model with three linear, binomial and Gaussian kernels was used to distinguish Alzheimer`s disease from healthy individuals.
    Results
    Finally, SVM model with Gaussian kernel, separated AD and healthy subjects with 88.34% accuracy. The most important Areas for Alzheimer were three Area: Right para hippocampal gyrus, Left para hippocampal gyrus and Right hippocampus. The clinical result of this study is to identify the most important ROI for the diagnosis of Alzheimer's by a clinical specialist. Experts should focus on atrophy in the three Areas.
    Conclusion
    This study showed that the SVM model with Gaussian RBF kernel can separated AD from healthy subjects by high accuracy. Based on results of this study, can make a software to use in MRI centers for screening AD test by people over the age of 50 years
    Keywords: Alzheimer's disease, magnetic resonance imaging, support vector machine
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال