به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب hasel amini khoshalan

  • سجاد خلیلی، مسعود منجزی*، حاصل امینی خوشالان، امیر سقط فروش
    Sajjad Khalili, Masoud Monjezi *, Hasel Amini Khoshalan, Amir Saghat Foroush

    Determining the appropriate blasting pattern is important to prevent any damage to the tunnel perimeter in conventional tunneling by blasting operation in hard rocks. In this research work, the LS-DYNA software and numerical finite element method (FEM) are used for simulation of the blasting process in the Miyaneh-Ardabil railway tunnel. For this aim, the strong explosive model and nonlinear kinematic plastic material model are considered. Furthermore, the parameters required for the Johnson-Holmquist behavioral model are based on the Johnson-Holmquist-Ceramic material model relationships and are determined for the andesitic rock mass around studied tunnel. The model geometry is designed using AUTOCAD software and Hyper-mesh software is applied for meshing simulation. After introducing elements properties and material behavioral models and applying control and output parameters in LS-PrePost software, the modeling process is performed by LS-DYNA software. Different patterns of blastholes including 66, 23, and 19 holes, with diameters of 40 and 51 mm, and depths of 3 to 3.8 m are investigated by three-dimensional FEM. The borehole pressure caused by the ammonium nitrate-fuel oil (ANFO) detonation is considered based on the Jones-Wilkins-Lee (JWL) equation of state in the LS-DYNA software. The outer boundaries of the model are considered non-reflective to prevent the wave’s return. The results showed that LS-DYNA software can efficiently simulate the blasting process. Moreover, the post-failure rate of the blasting is reduced by more than 30% using the main charge with less explosive power and reducing the distance and diameter of contour holes.

    Keywords: Drilling, Blasting, Railway Tunnel, Finite Element Method, LS-DYNA Software, Post-Failure}
  • Hassan Moomivand, Hasel Amini Khoshalan *, Jamshid Shakeri, Hassan Vandyousefi
    The fragment size of blasted rocks considerably affects the mining costs and production efficiency. The larger amount of blasthole diameter (ϕh) indicates the larger blasting pattern parameters, such as spacing (S), burden (B), stemming (St), charge length (Le), bench height (K), and the larger the fragment size.  In this study, the influence of blasthole diameter, blastability index (BI), and powder factor (q) on the fragment size were investigated. First, the relation between each of X20, X50, and X80 with BI, ϕh, and q as the main critical parameters were analyzed by Table curve v.5.0 software to find better input variables with linear and nonlinear forms. Then, the results were analyzed by multivariable linear regression (MLR) procedure using SPSS v.25 software and gene expression programming (GEP) algorithm for prepared datasets of four open-pit mines in Iran. Relations between each of X20, X50, and X80 with the combination of adjusted BI, ϕh, and q were obtained by MLR procedure with good correlations of determination (R2) and less root mean square error (RMSE) values of (0.811, 1.4 cm), (0.874, 2.5 cm) and (0.832, 5.4 cm) respectively. Moreover, new models were developed to predict X20, X50, and X80 by the GEP algorithm with better correlations of R2 and RMSE values (0.860, 1.3 cm), (0.913, 2.49 cm), and (0.885, 5.6 cm) respectively and good agreement with actual field results. The developed GEP models can be used as new relations to estimate the fragment sizes of blasted rocks.
    Keywords: rock fragmentation, Blasting, open pit mines, Multivariable linear regression, Gene Expression Programming}
  • Hasel Amini Khoshalan*, Seyed Rahman Torabi, Seyed Hadi Hoseinie, Behzad Ghodrati
    Earth pressure balance tunnel boring machines (EPB-TBMs) are favorably applied in urban tunneling projects. Despite their numerous advantages, considerable delays and high maintenance cost are the main disadvantages these machines suffer from. Reliability, availability, and maintainability (RAM) analysis is a practical technique that uses failure and repair dataset obtained over a reasonable time for dealing with proper machine operation, maintenance scheduling, cost control, and improving the availability and performance of such machines. In the present study, a database of failures and repairs of an EBP-TBM was collected in line 1 of Tabriz subway project over a 26-month interval of machine operation. In order to model the reliability of the TBM, this machine was divided into five distinct subsystems including mechanical, electrical, hydraulic, pneumatic, and water systems in a series configuration. According to trend and serial correlation tests, the renewal processes were applied, for analysis of all subsystems. After calculating the reliability and maintainability functions for all subsystems, it was revealed that the mechanical subsystem with the highest failure frequency has the lowest reliability and maintainability. Similarly, estimating the availability of all subsystems indicated that the mechanical subsystem has a relatively low availability level of 52.6%, while other subsystems have acceptable availability level of 97%. Finally, the overall availability of studied machine was calculated as 48.3%.
    Keywords: availability, maintainability, Reliability, tunnel boring machine}
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال