به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب inna krynytska

  • Inna Krynytska, Mariya Marushchak, Inna Birchenko, Alina Dovgalyuk, Oleksandr Tokarskyy

    Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), led to the ongoing global public health crisis. Existing clinical data suggest that COVID-19 patients with acute respiratory distress syndrome (ARDS) have worse outcomes and increased risk of intensive care unit (ICU) admission. The rapid increase in the numbers of patients requiring ICU care may imply a sudden and major challenge for affected health care systems. In this narrative review, we aim to summarize current knowledge of pathophysiology, clinical and morphological characteristics of COVID-19-associated ARDS and ARDS caused by other factors (classical ARDS) as defined by Berlin criteria, and therefore to elucidate the differences, which can affect clinical management of COVID-19-associated ARDS. Fully understanding the characteristics of COVID-19-associated ARDS will help identify its early progression and tailor the treatment, leading to improved prognosis in severe cases and reduced mortality. The notable mechanisms of COVID-19-associated ARDS include severe pulmonary infiltration/edema and inflammation, leading to impaired alveolar homeostasis, alteration of pulmonary physiology resulting in pulmonary fibrosis, endothelial inflammation and vascular thrombosis. Despite some distinct differences between COVID-19-associated ARDS and classical ARDS as defined by Berlin criteria, general treatment principles, such as lung-protective ventilation and rehabilitation concepts should be applied whenever possible. At the same time, ventilatory settings for COVID-19-associated ARDS require to be adapted in individual cases, depending on respiratory mechanics, recruitability and presentation timing.

    Keywords: SARS-CoV-2, COVID-19 pandemic, Respiratory distress syndrome, Respiratory mechanics}
  • Iryna Boiko*, Yuliia Stepas, Inna Krynytska
    Background and Objectives

    Antimicrobial resistance of Neisseria gonorrhoeae is globally spread and threatening. Culturing of N. gonorrhoeae is the only method to collect live isolates for investigation antimicrobial resistance profile. Therefore, quality assessment of N. gonorrhoeae culture is essential for successful isolation of gonococci. This study was conducted to evaluate deferred and bedside culture of N. gonorrhoeae depending on the year season and temperature condition of transport media temporary storage.

    Materials and Methods

    Urogenital swabs from 46 symptomatic heterosexual patients with gonorrhoea and subculture of N. gonorrhoeae in 46 suspensions in concentrations 1.5 × 108 CFU/ml were subjected to the study. Non-nutritive transporting medium Amies Agar Gel Medium with charcoal (Copan Diagnostics Inc., Brescia, Italy) was used for deferred culture and selective Chocolate agar TM+PolyViteX VCAT3 (BioMérieux, Marcy-l'Étoile, France) for both tested methods of culture.

    Results

    The specificity of both bedside and deferred methods of culture was 100%. The sensitivity of deferred culture was higher than of bedside culture (82.6% vs 47.8%, p<0.0005). Deferred culture showed significantly higher sensitivity comparing to bedside culture in summer (100% vs 50%, p=0.003), and comparably the same as for bedside culture in autumn, winter and spring.

    Conclusion

    The viability of N. gonorrhoeae subcultures was significantly higher in refrigerated samples from transport media than from ambient one after exposition from 48 to 96 hours. Optimal viability of N. gonorrhoeae was observed when transport swabs were kept refrigerated up to 48 h (73.9-93.5%) or ambiently – up to 24 h (87%). Updating laboratory guidelines regarding sampling and timely specimen processing might improve gonococcal culture performance.

    Keywords: Neisseria gonorrhoeae, Culture, Transport media, Antimicrobial susceptibility}
  • Yuliia Bukina*, Marina Thyhonovska, Mariya Koval, Mariya Marushchak, Inna Krynytska, Aleksandr Kamyshnyi
    Background and Objectives

    Intestinal microbiota is involved in the development and maintenance of immune homeostasis. This study was conducted to investigate the levels of key immunoregulatory bacteria in the intestinal wall-associated microflora and its effect on the transcriptional activity of the Foxp3 and RORyt genes in the gut-associated lymphoid tissue (GALT) of rats with Salmonella-induced inflammation, both untreated and treated with vancomycin and Bacteroides fragilis.

    Materials and Methods

    To determine the levels of immunoregulatory bacteria in GALT of rats Q-PCR was used to identify them by species-specific 16S rDNA genes. Transcriptional activity of Foxp3 and RORyt genes was determined using Q-PCR with reverse transcription.

    Results

    In animals treated with both vancomycin and Salmonella, the levels of segmented filamentous bacteria (SFB) increased while Akkermansia muciniphila and Faecalibacterium prausnitzii decreased. In rats that received pretreatment with vancomycin and then were infected with S. Enteritidis and S. Typhimurium, the levels of SFB increased, and the number of Bacteroides-Prevotela group, A. muciniphila, Clostridium spp. clusters XIV, IV, and F. prausnitzii significantly decreased, decreasing Foxp3 and increasing Rorγt mRNA expression. Administration of B. fragilis to animals treated with S. Enteritidis or S. Typhimurium and pre-treated with vancomycin caused a decrease in SFB and Rorγt mRNA levels and conversely, increased the numbers of the Bacteroides-Prevotela group, Clostridium spp. clusters XIV, IV, A. muciniphila, F. prausnitzii and Foxp3 gene expression in GALT.

    Conclusion

    Our results suggest that the commensal microorganism B. fragilis may provide a protective role against the development of experimental colitis, which has to be taken into consideration for further clarification of the effective therapeutic strategy of inflammatory bowel diseases, irritable bowel syndrome and necrotising colitis.

    Keywords: Salmonella, Vancomycin, Bacteroids, Immunoregulation, Genes expression}
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال