به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

j. hamidzadeh

  • منا زنده دل، جواد حمیدزاده*
    اینترنت اشیاء، یک فناوری جدید است که این فناوری از طریق اینترنت با اشیاء پیرامون خود ارتباط برقرار می کند و باهدف سنجش و کنترل از راه دور استفاده می گردد. در زمینه امنیت شبکه اینترنت اشیاء (IoT)، شناسایی دقیق انواع حملات به این شبکه ها که توسط میزبان های زامبی تحت کنترل مهاجم راه اندازی می شوند، اهمیت زیادی دارد. برای کاهش این تهدیدات، به روش های جدیدی نیاز است تا حملاتی که دستگاه های IoT را به خطر انداخته است، در کم ترین زمان ممکن شناسایی و از زیان های ناشی از حملات جلوگیری کنند. در این مقاله، یک شبکه عصبی جدید جهت بهبود تشخیص نفوذ به شبکه اینترنت اشیاء بر اساس شبکه عصبی کانولوشنال ALEXNET و الگوریتم بهینه سازی میگوی آشوبی به نام (MONANET) پیشنهاد شده است. در شبکه ی MONANET به منظور بهبود دقت در تشخیص نفوذ به شبکه ی IOT و عدم نیاز به تنظیم دستی پارامترها، فراپارامترهای شبکه عصبی با استفاده از الگوریتم میگوی آشوبی به صورت پویا انتخاب می شوند. مقدار تابع تلفات مجموعه اعتبارسنجی که از اولین آموزش مدل شبکه عصبی با استفاده از مجموعه داده Danmini doorbell به دست می آید، به عنوان مقدار تناسب CKH در نظر گرفته می شود. عملکرد جامع شبکه ی پیشنهادی و الگوریتم های GRU، ANN، SVM،LSTM ،FNN ،R-CNN وAPSO-CNN در پنج شاخص ارزیابی و در 12 اجرای مستقل مقایسه شده اند. نتایج به دست آمده نشان دهنده بهبود تشخیص نفوذ به شبکه اینترنت اشیاء است. الگوریتم پیشنهادی توانسته است بادقت 89.99 % حملات به شبکه اینترنت اشیاء را تشخیص دهد. نتایج تجربی برتری روش پیشنهادی را نسبت به سایر روش های مرز دانش از نظر بهبود دقت طبقه بندی نشان می دهد.
    کلید واژگان: شبکه ی MONANET, شبکه ی عصبی کانولوشن, شبکه ی ALEXNET, امنیت شبکه اینترنت اشیا, الگوریتم کریل کیاتیکی (CKHA), تشخیص حمله
    M. Zendehdell, J. Hamidzadeh *
    The Internet of Things is a new technology that communicates with the surrounding objects through the Internet and is used for the purpose of remote measurement and control. In the field of Internet of Things (IoT) network security, it is very important to accurately identify the types of attacks on these networks that are launched by zombie hosts under the control of the attacker. In this article, a new neural network is proposed to improve the detection of intrusion into the Internet of Things network based on the ALEXNET convolutional neural network and chaotic krill optimization algorithm (MONANET). In the MONANET network, in order to improve the accuracy in detecting intrusion into the IoT network and not need to manually adjust the parameters, the hyperparameters of the neural network are dynamically selected using the chaotic krill algorithm. The value of the loss function of the validation set obtained from the first training of the neural network model using the Danmini doorbell dataset is considered as the CKH fitness value. The comprehensive performance of the proposed network and GRU, ANN, SVM, LSTM, R-CNN, and APSO-CNN algorithms have been compared in five evaluation indices and 12 times independent experiments. The obtained results show the improvement of intrusion detection to the Internet of Things network. The proposed algorithm has been able to accurately detect %99.89 attacks on the Internet of Things network. The experimental results show the superiority of the proposed method over other knowledge boundary methods in terms of improving classification accuracy.
    Keywords: MONANET network, Convolutional neural network, Alexnet network, IoT Network Security, Chaotic Krill Herd (CKHA), Attack Detection
  • J. Hamidzadeh *, M. Moradi

    Recommender systems extract unseen information for predicting the next preferences. Most of these systems use additional information such as demographic data and previous users' ratings to predict users' preferences but rarely have used sequential information. In streaming recommender systems, the emergence of new patterns or disappearance a pattern leads to inconsistencies. However, these changes are common issues due to the user's preferences variations on items. Recommender systems without considering inconsistencies will suffer poor performance. Thereby, the present paper is devoted to a new fuzzy rough set-based method for managing in a flexible and adaptable way. Evaluations have been conducted on twelve real-world data sets by the leave-one-out cross-validation method. The results of the experiments have been compared with the other five methods, which show the superiority of the proposed method in terms of accuracy, precision, recall.

    Keywords: Recommender Systems, Online Learning, Natural Noise, Concept Drift
سامانه نویسندگان
  • دکتر جواد حمیدزاده
    دکتر جواد حمیدزاده
    دانشیار مهندسی کامپیوتر،، دانشگاه صنعتی سجاد، مشهد، ایران
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه ایشان را ببینید.
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال