به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

mahdi amirmiandaragh

  • عباس مطلبی، سید احمد شایان نیا*، مهدی امیر میاندرق، ابراهیم نیک نقش

    هدف این مطالعه بهینه سازی یک سیستم چند منبعی  با محوریت انرژی های تجدید پذیر با روش شبیه سازی گذرا و روش شناسی سطح پاسخ می باشد. در ابتدا دو عامل مستقل یعنی پنل های فتوولتائیک و دستگاه cchp بعنوان متغیرهای طراحی و در ادامه 7 تابع هدف شامل مصرف کل برق، مصرف کل گاز، کل مصرف سوخت cchp، هزینه نگهداری و تعمیرات، هزینه توقفات خطوط تولیدی، میزان کاهش آلاینده های زیست محیطی و بازگشت سرمایه بعنوان پاسخ اقتصادی برای بهینه سازی توسط روش شبیه سازی گذری و روش طراحی آزمایش(سطح پاسخ) مورد بررسی قرار می گیرد. نتایج نشان داد بهینه سازی به روش طراحی آزمایش در نقطه بهینه در مساحت پنل فتوولتائیک 5/16143مترمربع و در توان cchp 29/2328 کیلوات رخ می دهد که بازگشت سرمایه آن 29/2 سال است. همچنین اثر تغییر عامل های مساحت پنل های خورشیدی و توان cchp روی تابع مطلوبیت به حالت بهینه و مقدار 729/0 رسیده است، مفهوم این مقدار یعنی ترکیب متغیرهای انتخاب شده در بهینه سازی در بهترین حالت سیستم بهینه به مقدار تابع مطلوبیت 729/0  می رسد که عددی بسیار نزدیک بیشترین مقدار ممکن یعنی حالت ایده آل تابع مطلوبیت 1 می باشد؛ پیشنهاد می شود در مطالعات آینده از منابع انرژی دیگر نظیر باد و زمین گرمایی و همچنین با روش های الگوریتم های هوش مصنوعی بررسی گردد.

    کلید واژگان: انرژی های تجدید پذیر, بهینه سازی, سیستم های گذری, بهینه سازی چند پاسخی, طراحی آزمایش
    Abbas Motallebi, Seyyed Ahmad Shayannia *, Mahdi Amirmiandaragh, Ebrahim Niknaghsh
    Introduction

    According to Article 8 of the approvals of the Supreme Energy Council of the country, all executive bodies subject to Article (5) of the Civil Service Law are required to provide five percent (5%) of their annual electricity needs through the construction of renewable power plants, and this amount at the end of the fourth year reach at least twenty percent (20%), at the same time, due to the restrictions on electricity consumption in the hot season of the year and power cuts in industries, the use of energy production equipment has become very important, and organizations are required to use of these equipments, in this research, optimization of the combined system consisting of solar photovoltaic panels and diesel generator as two independent decision variables and 7 responses or optimization objective function including system electricity consumption, system gas consumption, diesel fuel consumption, The reduction of environmental pollutants, the cost of maintenance and repairs, the cost of stopping production lines and also the return on investment are investigated as dependent variables of the research, an optimization method is used to achieve the best possible design in Transis software, in addition to finding To best combine the selected factors in the system, the response level method is used, the main purpose of the response level is to estimate and predict the effect of independent variables on the dependent variable. The results show that the effect of the change in the area of solar panels to produce electricity and the power of the diesel generator on the utility function has been selected to the optimal state, its value is 0.740, and it means that the combination of variables planned in the optimization section in The best optimal state has been reached, whose number is close to the highest possible value in the ideal state with a value of 1. Also, strategy 1, which includes the direct purchase of the total electricity demand from the grid and the direct sale of the total electricity produced by the system, is economically It seems more economical. 

    Materials and Methods

    The precise design of parallel systems including solar panels and distributed generation devices is very important so that all parameters are in their optimal state. Therefore, in this research, an optimization method is used to achieve the best possible design in Transis software. In this research, the experiment design method is used with the help of the response surface method, the response surface method is a statistical method that is used to investigate the interactions between independent variables in the processes and optimize them. The main purpose of the response level method is to estimate and predict the effect of independent variables on the dependent variable. For this purpose, mathematical models are used that describe the relationship between independent and dependent variables. In general, the system is first implemented in the Transis software, then the output obtained in the Design Expert software is performed using the response level design method. and again, these outputs are entered into Transis software and model optimization is done. According to the selected factors, the test design method (response level) designs and proposes a set of tests or simulations, which in the conducted research, 13 tests are performed, and these responses are a quadratic equation for pre The analysis of the relationship between the energy-economic responses will be chosen and will form the independent optimization factors that are used from equation 1:     y is the considered energy-economic response, z is the selected factor (factor) to optimize, i and j are the counters of the number of independent factors and N_f is the number of factors. Also, β's are unknown coefficients that will be obtained by regression analysis. de_i is the desirability of answer i and N_r is the number of answers. It is necessary to explain that the purpose of multi-objective optimization is to maximize the combined utility.The power consumption of power generation equipment, including pumps, compressed air compressors, production presses, welding equipment, determines the annual power consumption of the system. This is obtained through equation 3. N_t is the number of time steps in the numerical solution for the entire duration of the simulation. PC is energy consumption in kJ h-1, f is a coefficient that indicates the on or off status of each component. When the consumer device is on, f is equal to one and when it is off, f is equal to zero.Considering that an auxiliary boiler with natural gas fuel has been used to support the solar system and to recover the desiccant wheel, in order to increase the temperature of the working fluid to a certain temperature (T_set), the annual consumption of natural gas (ANGC) is obtained from equation 4 comes:   η_boiler is the efficiency of the boiler and LHV is the lower calorific value of the consumed natural gas. 

    Findings

    The response level method is used to obtain the best combination of the selected factors, the values predicted by the response level test design method for the factors in order to achieve the optimal system.The highest value of the utility function or CD is equal to 0.725. This result shows that by using the optimal combination of the mentioned factors, the system reaches an optimal state (optimal system) and the value of the utility function approaches 0.725. By increasing the power of the diesel generator from 0 to 3000 kilowatts, the amount of total electricity consumption will decrease from about 7000000 kilowatt hours per year to about 2500000 kilowatt hours per year. In order to optimize the system, the test design method (response level) has been used. The most optimal point is in the area of solar panels equal to 16143.5 square meters and in cchp power equal to 2328.29 kilowatts. At this optimal point, the total electricity consumption is equal to -1327920 kWh per year. Increasing the power of cchp from 0 to 1600 kW leads to a sharp reduction in gas consumption, in this model gas consumption is reduced by 77.4%, which is equivalent to 1310000 cubic meters per year and will reach about 300000 cubic meters per year. Changes in gas consumption and cchp fuel consumption have opposite trends. In fact, it is not possible to reduce gas consumption and fuel consumption in CCHP at the same time, and their trends are opposite to each other. The payback period is less effective with the increase in the area of solar panels. On the other hand, increasing the power of cchp up to about 2000 kW will lead to a sharp decrease in the payback period. Also, increasing the power of cchp to more than 2000 to 3000 kW will lead to the return on investment period will increase. Due to the use of solar panels and cchp, the operation of energy production equipment is reduced and this will lead to a reduction in the time used in maintenance and repairs, as well as a reduction in the purchase of spare parts. Due to power cuts in industries during peak times and the problems of lack of support for production lines due to the stoppage of production lines, with the implementation of the plan to use solar panels and cchp, production line stops will be zero. 

    Discussion and Conclusion

    According to the simulation results of the multi-source system using the test design method (response surface), it showed that the solar panels and cchp in the optimal state are equal to 16143 square meters and 2328 kW, while the best performance is in optimal conditions. The optimal system has a total electricity consumption of 13,227,920 kilowatts, a total gas consumption of 559,488 cubic meters, a total diesel fuel consumption of 2,228,300 liters, an amount of environmental pollutants of 4,842 kilograms, and an investment return period of 2.29 years, maintenance and repair costs of $1,813, and production line shutdown costs. It is 4891880 dollars. From the analysis of the results, it can be concluded that the optimal combined system with cchp and solar panels is able to provide the total electricity required by the complex not only during peak hours (when the demand for electricity is high) but also during off-peak hours (when the demand for electricity is lower). is) is This system shows the ability to generate excess electricity at certain times that can be sold to the public power grid.

    Keywords: Renewable Energies, Optimization, Transient Systems, Multi-Response Optimization, Experimental Design
  • عباس مطلبی، احمد شایان نیا *، مهدی امیر میاندرق، ابراهیم نیک نقش

    طبق آین نامه ماده 16 قانون جهش تولید دانش بنیان می بایست کلیه صنایع که بالای 2 مگاوات برق مصرف می نمایند در طی 5 سال 5 درصد برق مصرفی خود را از انرژی های تجدید پذیر استفاده نمایند، بر این اساس دراین پژوهش مدل ترکیبی سیستم تولید انرژی از روش شبیه سازی گذری با استفاده از نرم افزار ترنسیس مدل سازی شده با استفاده ازروش طراحی آزمایش به کمک روش سطح پاسخ مدل بهینه می گردد. دو عامل مستقل، مساحت پنل های خورشیدی و توان دیزل ژنراتور به عنوان متغیرهای اصلی انتخاب شده است و در ادامه مصرف کل برق، کل مصرف گاز، کل مصرف سوخت دیزل وهمچنین، بازگشت سرمایه به عنوان پاسخ اقتصادی برای بهینه سازی انتخاب شده است نتایج نشان میدهد که افزایش مساحت پنلهای خورشیدی با یک شیب کم باعث افزایش دوره بازگشت سرمایه می شود. از سوی دیگر، افزایش توان دیزل ژنراتور تا حدود 2000 کیلووات به کاهش شدید دوره بازگشت سرمایه کمک می کند. اما افزایش بیشتر توان دیزل ژنراتور از 2000 تا 3000 کیلووات باعث افزایش دوره بازگشت سرمایه میشود. بهینه سازی به روش سطح پاسخ نشان داد که نقطه بهینه در مساحت پنل 11716.89 مترمربع و در توان دیزل ژنراتور 1986.69 کیلوات رخ میدهد که بازگشت سرمایه آن 1.612 سال است، نتایج نشان داد که بیشترین مقدار تابع مطلوبیت مقدار 0.725 است. که عددی بسیار نزدیک نسبت به بیشترین مقدار ممکن (یعنی حالت ایده آل که تابع مطلوبیت آن برابر با مقدار 1 است.

    کلید واژگان: شبیه سازی, انرژی های تجدید پذیر, بهینه سازی, سیستم های گذری, بهینه سازی چند پاسخی
    Abbas Motallebi, Ahmad Shayannia *, Mahdi Amirmiandaragh, Ebrahim Niknaghsh

    According to Article 16 of the Knowledge-Based Production Leap Law, all industries that consume more than 2 megawatts of electricity must use 5% of their electricity consumption from renewable energy within 5 years. The model is optimized from the transient simulation method using Transis software, using the test design method, with the help of the response surface method. Two independent factors, the area of the solar panels and the power of the diesel generator have been selected as the main variables, and then the total electricity consumption, the total gas consumption, the total diesel fuel consumption, as well as the return on investment have been selected as the economic answer for optimization. It shows that increasing the area of solar panels with a low slope increases the investment return period. On the other hand, increasing the power of the diesel generator to about 2000 kilowatts helps to reduce the investment return period. But increasing the power of the diesel generator from 2000 to 3000 kilowatts increases the period of return on investment. Optimization using the response surface method showed that the optimal point occurs in the panel area of 11716.89 square meters and in the diesel generator power of 1986.69 kilowatts, the return on investment is 1.612 years, the results showed that the maximum value of the utility function is 0.725. which is a number very close to the maximum possible value (that is, the ideal state whose utility function is equal to 1

    Keywords: Simulation, Renewable Energies, Optimization, Transient Systems, Multi-Response Optimization
  • عباس مطلبی، احمد شایان نیا*، مهدی امیر میاندرق، ابراهیم نیک نقش
    هدف این پژوهش بهینه سازی سیستم ترکیبی متشکل از پنل های فتوولتائیک خورشیدی و دستگاه دیزل ژنراتور به عنوان 2 متغیر تصمیم مستقل و 5 پاسخ و یا تابع هدف بهینه سازی شامل مصرف برق سیستم، مصرف گاز سیستم، مصرف سوخت دیزل، میزان کاهش آلاینده های زیست محیطی و همچنین بازگشت سرمایه به عنوان متغیرهای وابسته تحقیق اند. برای دستیابی به بهترین طراحی ممکن در نرم افزار ترنسیس از یک روش بهینه سازی استفاده می شود. درضمن برای پیدا کردن بهترین ترکیب فاکتورهای انتخاب شده در سیستم، از روش سطح پاسخ استفاده شده است. هدف اصلی سطح پاسخ، برآورد و پیش بینی تاثیر متغیرهای مستقل بر متغیر وابسته است. پس از پیاده سازی سیستم در نرم افزار ترنسیس و بهینه سازی توسط روش سطح پاسخ نتایج نشان داد که مساحت پنل های فتوولتائیک در حالت بهینه برابر با 11770 متر مربع و توان دیزل ژنراتور بهینه برابر با 984 کیلووات است. همچنین در شرایط بهینه، سیستم بهترین عملکرد را داشته و مطلوبیت ترکیبی برابر با 740/0 است. این عدد نشان می دهد که عملکرد سیستم بهینه و نزدیک به حالت ایدئال یعنی 1 است. ازنظر مصرف انرژی، سیستم بهینه به مصرف کل برق 1026860 کیلووات، کل مصرف گاز 205182 متر مکعب، کل مصرف سوخت دیزل 1338030 لیتر، میزان آلاینده های زیست محیطی 23/3693 کیلوگرم و دوره بازگشت سرمایه 679/1 سال دست پیدا می کند. همچنین استراتژی 1 که شامل خرید مستقیم کل دیماند برق از شبکه و فروش مستقیم کل برق تولیدی سیستم به شبکه است، ازلحاظ اقتصادی به صرفه تر به نظر می رسد. نتایج شبیه سازی نشان داد که سیستم ترکیبی مورد بررسی، یک راهکار مناسب برای تولید همزمان انرژی الکتریکی و حرارتی بوده و قادر به تولید انرژی الکتریکی و حرارتی در طول سال است.
    کلید واژگان: شبیه سازی, انرژی های تجدید پذیر, بهینه سازی, سیستم های گذری, بهینه سازی چند پاسخی
    Abbas Motallebi, Ahmad Shayanniya *, Mahdi Amirmiandaragh, Ebrahim Niknaghsh
    The aim of this research is to optimize the combined system consisting of solar photovoltaic panels and a diesel generator as two independent decision variables and five responses or the optimization objective function, including system electricity consumption, system gas consumption, diesel fuel consumption, the amount of bio-pollutants reduction. The environment and the return on investment are dependent variables of this research; an optimization method is used to achieve the best possible design in Transis software, and the response level method is used to find the best combination of selected factors in the system. The main purpose of the response surface is to estimate and predict the effect of independent variables on the dependent variable after implementing the system in Transis software and optimizing by the response surface method. The results showed that the area of photovoltaic panels in the optimal state is equal to 11770 square meters and the optimal diesel generator power is equal to 984 kW. Also, in optimal conditions, the system has the best performance, and the combined utility is equal to 0.740, which indicates that the performance of the optimal system is close to the ideal state, i.e., one. In terms of energy consumption, the optimal system achieves a total electricity consumption of 1026860 kilowatts, a total gas consumption of 205182 cubic meters, a total diesel fuel consumption of 1338030 liters, an amount of environmental pollutants of 3693.23 kilograms, and an investment return period of 1.679 years. Also, strategy one, which includes the direct purchase of the total electricity demand from the grid and the direct sale of the total electricity produced by the system to the grid, seems to be economically more economical. The results of the simulation showed that the investigated combined system is a suitable solution to simultaneous energy production. It is electric and thermal, and it is capable of producing electric and thermal energy throughout the year.
    Keywords: Simulation, Renewable Energies, Optimization, Transient Systems, Multi-Response Optimization
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال