فهرست مطالب نویسنده:
mohammad hasan shams
-
پژوهش حاضر با هدف پیش بینی پراکندگی کنه های خانواده Ascidae با استفاده از شبکه عصبی مصنوعی در شهرستان دامغان استان سمنان انجام شد. بدین منظور مختصات طول و عرض جغرافیایی و ارتفاع از سطح دریا در 137 نقطه به صورت تصادفی، در سطح شهرستان مشخص و به عنوان ورودی های شبکه عصبی مصنوعی تعریف شد. خروجی نیز تعداد اعضای این خانواده در نقاط مذکور بود. در این پژوهش از شبکه عصبی مصنوعی با ساختار پرسپترون سه لایه با الگوریتم پس انتشار خطا، استفاده شد. برای ارزیابی قابلیت شبکه های عصبی مورد استفاده در پیش بینی پراکندگی از مقایسه آماری پارامترهایی مانند واریانس، توزیع آماری و میانگین بین مقادیر پیش بینی شده مکانی توسط شبکه عصبی و مقادیر واقعی آن ها استفاده شد. نتایج نشان داد که در فازهای آموزش و آزمایش بین مقادیر ویژگی های آماری واریانس، توزیع آماری و میانگین مجموعه داده های واقعی و پیش بینی شده مکانی این خانواده توسط شبکه عصبی، تفاوت معنی داری در سطح 95 درصد وجود نداشت (p> 0.4). در مجموع می توان چنین نتیجه گرفت که روش شبکه عصبی مصنوعی با تلفیق سه عامل طول و عرض جغرافیایی و ارتفاع از سطح دریا، قادر به پیش بینی پراکندگی این خانواده با دقت مناسب بود.کلید واژگان: کنه های شکارگر, الگوهای پراکنش, پرسپترون سه لایه, الگوریتم پس انتشارIn this study, the artificial neural network methods were used to estimate the distribution of ascid family (Acari: Mesostigmata). For this aim, latitude, longitude and elevation from the sea level of 137 points were defined as inputs and output of method was number of species of this family on those points and Perceptron with propagation algorithm was evaluated in artificial neural network method. To evaluate the ability of neural networks used to predict dispersion, statistical comparison of parameters such as variance, statistical distribution and mean of spatial predicted values by neural network and their actual values were used. The results showed that there was no significant difference (p> 0.4) in the training and test phases between the values of the statistical characteristics of variance, the statistical distribution and the mean of real and predicted spatial data of this family by the neural network. It can be concluded that the artificial neural network method was able to predict the dispersion of this family with proper precision by integrating three factors of latitude and longitude and elevation from the sea level.Keywords: Predatory mites, Distribution patterns, Perceptron, Propagation algorithm
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.