به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

mohammad javad valadanzouj

  • علیرضا طاهری دهکردی*، محمدجواد ولدان زوج، علیرضا صفدری نژاد
    تهیه نقشه اراضی کشاورزی یکی از لایه های اطلاعاتی مورد نیاز در مدیریت این زمین ها محسوب می شود. چنین نقشه هایی امکان پایش مستمر زمین های کشاورزی را در طول دوره کشت، فراهم می کنند. در این مطالعه، راهکاری به منظور تولید نقشه اراضی کشاورزی شهرستان شهرکرد، در دو کلاس زراعی و غیرزراعی، با استفاده از سری زمانی شاخص های مستخرج از تصاویر سنتینل 2 داده شده است. ازآن جا که استفاده از منابع داده حجیم یکی از موانع بهبود روش های مبتنی بر سری زمانی تصاویر ماهواره ای به شمار می رود، در این پژوهش از بستر پردازشی گوگل ارث انجین استفاده شده است. روش مطرح شده برمبنای تلفیق نتایج طبقه بندی نظارت شده پیکسل مبنا با نتایج قطعه بندی عمل می کند؛ به نحوی که ابتدا داده های آموزشی طبقه بندی نظارت شده، طی یک فرایند پالایشی سخت گیرانه، بدون نیاز به عملیات میدانی فراهم می شوند. سپس با محاسبه تفکیک پذیری دو کلاس هدف در سری زمانی هر شاخص، شاخص های بهینه انتخاب می شود. در نهایت، با تلفیق نتایج روش های قطعه بندی و طبقه بندی براساس آرای به دست آمده از نتایج طبقه بندی، به هر قطعه تصویری کلاس زراعی یا غیرزراعی نسبت داده می شود. این اقدام، علاوه بر دخالت دادن اطلاعات مکانی اعم از لبه ها و مجاورت های مکانی، توانسته است نویز و نتایج متخلخل طبقه بندی پیکسل مبنا را بهبود بخشد و دقت کلی نقشه نهایی را از 7/90 به 05/96 افزایش دهد. همچنین دقت کاربر دو کلاس زراعی و غیرزراعی به ترتیب 27/3 و 97/7% بهبود را نشان می دهند.
    کلید واژگان: طبقه بندی, قطعه بندی, تلفیق, گوگل ارث انجین, اراضی کشاورزی
    Alireza Taheri Dehkordi *, Mohammad Javad Valadanzouj, Alireza Safdarinezhad
    Map of croplands is one of the information layers required in the efficient management of these lands. Having such maps makes it possible to monitor agricultural fields during the growing season continuously. In this study, a solution to produce map of Shahrekord’s agricultural lands in two agricultural and non-agricultural classes is presented using the time series of different extracted indices from Sentinel-2 images. Since the use of large data sources is one of the obstacles to the development of methods based on the time series of satellite images, the Google Earth engine processing platform has been used in this study. The proposed method is based on integrating supervised pixel-based classification results with segmentation results. First, training data of supervised classification is provided in a rigorous refining process without the need of collected data from field surveys or interpretation of high-resolution satellite images. Then, by calculating the separability of the two target classes in the time series of each index, the optimal indices are selected. Finally, by combining the results of segmentation and classification methods based on the votes obtained from the classification results, agricultural or non-agricultural class is assigned to each of the image segments. In addition to incorporating spatial information including edges and spatial proximity, this method has been able to improve the noise and porous results of pixel-based classification and has increased the overall accuracy of the final map from 90.7% to 96.05%. Also, user accuracy of both agricultural and non-agricultural classes show an improvement of 3.27 and 7.97%, respectively.
    Keywords: Classification, Segmentatiom, Integration, Google Earth Engine, Croplands
  • علیرضا طاهری دهکردی*، سید محمدمیلاد شهابی، محمدجواد ولدان زوج، محمود رضا صاحبی، علیرضا صفدری نژاد

    امروزه فناوری سنجش ازدور جایگاهی ویژه در کاربردهای مختلف مدیریت شهری پیدا کرده است. در این بین، نقشه ی ساختارهای شهری نظیر بلوک های ساختمانی، عموما در مدیریت بحران، طراحی شهری و مطالعات مربوط به توسعه ی شهری مورد استفاده قرار می گیرند. در این مطالعه تولید نقشه بلوک های ساختمانی با استفاده از تصاویر ماهواره ای سنتینل 1 و 2 دنبال شده است. روش پیشنهادی این مقاله متکی بر استفاده از طبقه بندی کننده آموزش یافته تعمیم پذیر می باشد. به نحوی که در ابتدا، طبقه بندی کننده مورد نظر با استفاده از نمونه های آموزشی به دست آمده از یک فرآیند پالایشی سختگیرانه نوین توسط محصولات سنجش ازدوری و مکانی مختلف، در سال 2015، آموزش می یابد. سپس این طبقه بندی کننده به منظور تولید نقشه بلوک های ساختمانی در مقاطع زمانی مشابه سه سال هدف (2018، 2019 و 2020) به کار گرفته می شود. به دلیل تنوع بافت و تراکم بلوک های ساختمانی در کلان شهر تهران، روش پیشنهاد شده در این منطقه مورد ارزیابی قرار گرفته است. همچنین با توجه به وسعت منطقه مطالعاتی، فراهم بودن تصاویر ماهواره ای رایگان بدون نیاز به اخذ و امکان اجرای عملیات  مختلف پردازشی به صورت برخط، از سامانه گوگل ارث انجین در پژوهش حاضر استفاده شده است. سه روش طبقه بندی جنگل تصادفی، کمترین فاصله با معیار فاصله ماهالانابیس و ماشین بردارپشتیبان در این فرآیند مورد بررسی قرار می گیرند. به منظور ارزیابی روش پیشنهادی، از نمونه های مرجع به دست آمده از تفسیر بصری تصاویر با قدرت تفکیک مکانی بالا (گوگل ارث) در هر سه سال هدف استفاده شده است. نتایج به دست آمده عملکرد بهتر روش جنگل تصادفی در هر سه سال هدف با دقت کلی بالای 93 درصد را نسبت به دو روش دیگر نشان می دهند.

    کلید واژگان: سنجش ازدور, بلوک های ساختمانی, طبقه بندی کننده تعمیم پذیر, گوگل ارث انجین, تصاویر ماهواره ای سنتینل
    Alireza Taheri Dehkordi *, Seyyed Mohammad Milad Shahabi, Mohammad Javad Valadan Zouj, Mahmood Reza Sahebi, Alireza Safdarinejad
    Introduction

    Over the past three decades, with the rapid development of spatial-based satellite imagery, remote sensing technology has found a special place in various applications of urban management. Production of status maps of urban structures, the study of energy loss status, identification of thermal islands, monitoring of urban vegetation, and assessment of air pollution are just a few examples of areas related to urban management that remote sensing technology is the basis for indirect measurement of the related quantities. Maps of urban structures such as building blocks are commonly used in crisis management, urban design, and urban development studies.
     Materials

    In this study, the production of urban building block maps using Sentinel 1 and 2 satellite images has been conducted. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Building Index ( NDBI ) for three consecutive months, the slope feature derived from the 30-meter Shuttle Radar Topographic Mission (SRTM)Digital Elevation Model of the study area, along with two Vertical – Vertical (VV) and Vertical - Horizontal ( VH ) polarization in both ascending and descending orbits, form the set of input features.

    Methods

    The proposed method of this paper relies on the use of a generalizable trained classifier. Initially, the classifier is trained in 2015 using training samples obtained from a new rigorous refining process using different remote sensing and spatial products. This rigorous refining process uses a reference urban map of 2015. In the first step, the corresponding areas related to the ways and roads are removed using the OpenStreetMap data layer. Areas suspected of vegetation with NDVI greater than 0.2 are then discarded. Also, due to the high backscattering of buildings in Synthetic Aperture Radar images, areas with a value less than the average backscattering coefficient of the remaining areas are eliminated. Finally, the residual map is refined using the Mahalanabis distance and the Otsu automatic thresholding method. The trained classifier is then used to generate a map of building blocks at similar time intervals for the three target years (2018, 2019, and 2020). Due to the diversity of texture and density of building blocks in the metropolis of Tehran, the proposed method has been evaluated in this area. Due to the concentration of political, welfare, and social facilities, Tehran has experienced more unplanned and irregular expansion and urbanization than other cities in Iran, which has lead to changes in buildings and constructions. Also, due to the availability of free satellite images and various online processing operations, the Google Earth Engine platform has been used in this study. The performance of three different classifiers including Random Forest (RF), Minimum Mahalanabis Distance (MD), and Support Vector Machines (SVM) are examined in this process. In order to evaluate the proposed method, reference samples obtained from visual interpretation of high-resolution satellite images (Google Earth) in all three target years have been used.

    Results

    The performance of the aforementioned classifiers has been investigated using 3 different criteria: overall accuracy, user accuracy, and F-score of building blocks. The RF method with an overall accuracy of over 93% in all three target years has shown the best performance. The SVM method ranks second with an accuracy of about 91% every three years. However, the MD method with an overall accuracy below 85% in all three target years has not performed well.

    Discussion

    The results show better performance of the RF method in all three target years with an overall accuracy of over 93%. It should be noted that the MD classifier with higher user accuracy than other methods, has shown better performance in detecting the class of building blocks. However, the RF method is the best classifier in terms of the user accuracy of the background class. The effect of using two VV and VH polarization and also the slope derived from the SRTM Model in the input feature set on the final accuracy of classification was also investigated. According to the results, the simultaneous use of these three features produces more accurate results in both target classes. However, the results show that the use of VV polarization increases the final classification accuracy compared to VH polarization. The presence of slope feature along with both polarizations has also increased the classification accuracy of each class, especially the background class. However, the exclusion of both VV and VH features from the input feature set has resulted in a more than 10% reduction in overall classification accuracy.

    Conclusion

    Based on calculated overall accuracies which are above 80% in the majority of investigated cases, two different results can be concluded. First, the trained classifier has shown good temporal generalization and has achieved acceptable accuracy in the target years. Second, due to the different collection processes of training and evaluation data, the proposed rigorous refining method for the preparation of training data has shown good performance. The effect of using two VV and VH polarization and also the slope derived from the SRTM  Digital Elevation Model in the input feature set on the final accuracy of classification was also investigated. According to the results, the simultaneous use of these three features produces more accurate results in both target classes. However, the results show that the use of VV polarization increases the final classification accuracy compared to VH polarization. The presence of slope feature along with both polarizations has also increased the classification accuracy of each class, especially the background class. However, the exclusion of both VV and VH features from the input feature set has resulted in a tangible decreasein overall classification accuracy.

    Keywords: Remote Sensing, Building Blocks, Generalizable Trained Classifier, Google Earth Engine, Sentinel Satellite Images
  • علیرضا صفدری نژاد، مهدی مختارزاده، محمد جواد ولدان زوج
    داده های اخذ شده توسط سیستم های لیزر اسکنر هوایی به دلیل برخورداری از مزایایی نظیر دقت هندسی نسبتا بالا و تراکم مکانی بالای نقاط، اطلاعات هندسی متنوع و منحصر به فردی از سطوح فیزیکی عوارض فراهم می آورند. طبقه بندی و تفکیک داده های ابر نقطه به عوارض سازنده ی محیط، نقش مهمی در روند مدلسازی سه بعدی عوارض ایفا می کند. در مقاله پیش رو، مساله ی تفکیک ابرنقاط بعنوان یک فرایند طبقه بندی نظارت شده مدنظر قرار گرفته شده است؛ روند اجرایی در روش پیشنهادی مبتنی بر سه گام بوده که در گام نخست، برای هر نقطه از ابرنقاط مجموعه ای از ویژگی ها مبتنی بر تحلیل های مجاورتی تولید می گردد. در گام دوم، ویژگی های بهینه به کمک داده های آموزشی و فضای پدیده استخراج شده و در نهایت، طی یک الگوریتم خوشه بندی، با استفاده از ویژگی های استخراج شده، داده های ابر نقطه به کلاس های مد نظر طبقه بندی می گردند. از این روش به منظور طبقه بندی ابر نقاط چندبازگشتی لایدار مربوط به یک منطقه ی شهری استفاده شد که نتایج طبقه بندی، دقت کلی معادل 15/93درصد و ضریب کاپای 89/0 را نشان دادند.
    کلید واژگان: لیزر اسکنر هوایی, خوشه بندی, تحلیل مجاورت, انتخاب ویژگی, فضای پدیده, فضای ویژگی
    Alireza Safdarinezhad, Mahdi Mokhtarzadeh, Mohammadjavad Valadanzouj
    High accuracy and huge density of 3D points cloud acquired by airborne Lidar makes them as a good and suitable tool in order to analyze of terrain surface. In this procedure, points cloud clustering is a fundamental step in the procedure of information extraction form LiDAR's data. In this paper a novel method is proposed for supervised classification of LiDAR points cloud based on contextual analysis on LiDAR points. The proposed method consists of three main steps. In the first step, a set of contextual features are produced for each points in LiDAR data. In second step, optimum feature selection is done in the modified prototype space using a new strategy. The last step is conducted to a simple k-means clustering on the feature space spanned by optimum contextual clusters. An urban area with the residential texture has been used as the case study to evaluation of the proposed method. The results indicate proper classification accuracies. The overall accuracies and kappa coefficients was 93.15% and 0.89 respectively.
    Keywords: Airborne Laser Scanners (ALS), Clustering, Contextual analysis, Feature Selection, Prototype space, Feature space
  • امیرمسعود چگونیان *، مهدی مختارزاده، محمد جواد ولدان زوج، مهدی بلوکی
    در این مقاله طبقه بندی پوشش آبسنگ های مرجانی در منطقه خلیج فارس با استفاده از تصاویر متوسط مقیاس ماهواره لندست 8 بررسی گردید. برای این منظور، طی انجام عملیات غواصی، به تهیه داده های میدانی از آبسنگ های مرجانی جزایر قشم و لارک اقدام شد. پس از انجام پیش پردازش های لازم روی تصویر ماهواره ای، الگوریتم بیشترین احتمال برای طبقه بندی تصویر پیاده گردید. نتایج تحقیق بیانگر مطابقت بالای نتایج طبقه بندی در خلیج فارس با تحقیقات مشابه در سایر مناطق مرجانی جهان است. همچنین دیده شد که تصاویر ماهواره ای متوسط مقیاس، توانایی طبقه بندی 2 تا 4 کلاس را با دقت بالای 70% روی صخره های مرجانی در این منطقه دارا هستند. بهترین سطح طبقه بندی، طبقه بندی با 3 و 4 کلاس تعیین گردید و نشان داده شد که با افزایش بیشتر تعداد کلاس ها، دقت متوسط طبقه بندی به پایین تر از 50% کاهش می یابد.
    کلید واژگان: آبسنگ های مرجانی, تصاویر ماهواره ای, لندست 8, طبقه بندی, خلیج فارس
    Amir Masoud Chegoonian*, Mehdi Mokhtarzade, Mohammadjavad Valadan Zouj, Mehdi Bolouki
    In this paper, coral reef mapping for the Persian Gulf using medium resolution LANDSAT 8 was investigated. The research was accomplished on data collected from diving in Queshm and Larak Islands, Persian Gulf. After image pre-processing, the Maximum Likelihood algorithm was implemented for satellite image classification. The research presents correspondent results with similar researches on coral reefs around the world. It also showed that medium resolution satellite images were capable of mapping 2 to 4 classes with the accuracy of 70% on coral reefs in the area. The best mapping level was determined with 3 and 4 classes. Results showed that increase in number of classes will cause average mapping accuracy to be decreased fewer than 50%.
    Keywords: Coral reef, Sattelite images, Landsat 8, Classification, Persian Gulf
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال