به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

mohammadhosain kianmehr

  • سعید آقاعزیزی*، محمدحسین کیانمهر، امیر شایعی، محمدعلی کیهان دوست

    جداسازی یک عضو غیرقابل انکار در فرآیند پس از برداشت محصولات فله ای است. دستگاه جداکننده میز وزنی (GTSM) یکی از دستگاه هایی است که برای جداسازی ناخالصی های موجود در توده های دانه استفاده می شود. با توجه به تعداد پارامترهای قابل تغییر در GTSM و تاثیربالای این عوامل بر میزان SP ناخالصی ها در توده لوبیا چشم بلبلی و با توجه به اینکه بررسی تمام مقادیر در این مورد تقریبا غیرممکن به نظر می رسد. استفاده از یادگیری ماشین (ML) برای پیش بینی فرآیند SP در برابر تغییرات اعمال شده در این عوامل، استفاده از GTSM برای نخود سیاه چشم (BeP) را تسهیل می کند. مطالعه حاضر در مورد پیش بینی عملکرد یک GTSM در جداسازی BeP است. متغیرهای وابسته شامل دانه های تمیز شده (Y1)، وزن دانه های تمیز شده (Y2)، تعداد ناخالص کل (Y3)، وزن ناخالص کل (Y4)، تعداد دانه های پوسیده (Y5)، وزن دانه های پوسیده (Y6)، دانه های شکسته شده بودند. تعداد (Y7) و وزن دانه شکسته (Y8) و متغیرهای مستقل شامل شیب های عرضی جدول (X1)، شیب های طولی جدول (X2)، فرکانس نوسان میز (X3) و سرعت هوای دمنده (X4) می باشد. روش های مورد استفاده جنگل تصادفی منفرد (RF) و جنگل تصادفی ترکیبی با الگوریتم ژنتیک (RF-GA) برای بهینه سازی پارامترهای RF بودند. نتایج با استفاده از ضریب همبستگی (CC)، شاخص پراکنده (SI) و شاخص ویلموت (WI) مورد ارزیابی قرار گرفت. با توجه به یافته ها، روش ترکیبی عملکرد بالاتری نسبت به روش تک ارایه کرد و عملکرد پیش بینی را با موفقیت افزایش داد.

    کلید واژگان: لوبیای چشم بلبلی, یادگیری ماشین, جداسازی, میز وزنی
    Saeed Agaazizi *, Mohammadhosain Kianmehr, Amir Shayei, Mohammadali Keyhandoust

    Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.

    Keywords: Black-eyed pea, Machine Learning, Separation, gravity table
  • سعید آقاعزیزی، منصور راسخ*، یوسف عباسپور گیلانده، ترحم مصری گندشمین، محمدحسین کیانمهر

    وجود انواع ناخالصی ها در زمان برداشت گندم از عوامل مهم در افت کیفیت گندم است در نتیجه تشخیص ناخالصی های توده دانه گندم ضروری به نظر می رسد. در این مطالعه به بررسی امکان شناسایی گندم در توده دانه گندم و تخمین میزان ناخالصی موجود در توده، مبتنی بر پردازش ویدیو به کمک دو نوع الگوریتم شبکه عصبی مصنوعی (ANN) و همچنین هیبرید الگوریتم ژنتیک پرداخته شده است. پس از تهیه ویدیوی حرکت توده بر روی تسمه نقاله، با استفاده از نرم افزار MATLAB و جعبه ابزار پردازش تصویر، 17 ویژگی شکلی، 12 ویژگی رنگی و 6 ویژگی بافتی از هر نمونه دانه موجود در تصویر استخراج شد. داده های بدست آمده از بخش پردازش تصویر به پنج دسته گندم، جو، یولاف، کاه-کلش، بذر علف هرز طبقه-بندی شدند. از دو نوع الگوریتم شبکه عصبی مصنوعی (ANN) پیش خور (newff) و پس خور (newcf) و هیبرید الگوریتم ژنتیک برای دستیابی به بالاترین دقت طبقه بندی و کمترین مقدار خطا استفاده شد. نتایج نشان داد از 36 ساختار مختلف شبکه عصبی مصنوعی (ANN)، ساختار 5-4-10-35 برای الگوریتم newff با دقت 100 و 74/89 درصد به ترتیب برای شرایط آموزش و تست و با زمان پردازش 39/10 ثانیه و ساختار 5-8-10-35 برای الگوریتم newcf با دقت 100 درصد برای شرایط آموزش و 17/87 درصد برای شرایط تست و با زمان پردازش 94/44 ثانیه بدست آمد. نتایج حاصل از هیبرید الگوریتم GA نشان داد بالاترین دقت طبقه بندی به ترتیب دارای 55/95 درصد و 66/86 درصد برای آموزش و تست و در ساختاری که در آن از 8 نرون در لایه مخفی با اندازه جمعیت 200 استفاده شده بود، حاصل شد. با توجه به نتایج بدست آمده، استفاده از پردازش ویدیو به کمک شبکه عصبی مصنوعی ANN و الگوریتم newff با توجه به دقت بالا و زمان محاسبات پایین تر ابزار توانمندی برای شناسایی ناخالصی های توده دانه گندم است.

    کلید واژگان: گندم, شبکه عصبی مصنوعی, الگوریتم ژنتیک, تشخیص ناخالصی
    Saeed Agaazizi, Mansour Rasekh *, Yousef Abbaspour Gilandeh, Tarahom Mesri Gundoshmian, Mohammadhosain Kianmehr
    Introduction

    Wheat is one of the most important grains in the human food basket, which is known as a major source of energy, protein and fiber due to its valuable nutrients. The post-harvest stage of the wheat crop is explained in two ways: either it is sent to food processing factories or it is stored in silos for sale at regular intervals. Various parameters represent the quality of wheat grain that the percentage of purity of the mass is one of the main factors affecting the purchase price of the product. Several types of non-wheat grains, including germinated grains, broken grains, legumes, weed seeds, insect-damaged grains, foreign matter (pebbles, straw), etc. are the main sources of impurities in wheat. Researchers have always tried to develop computer-based solutions for impurities in wheat grain to be able to develop automated wheat grain separators. Image processing based on morphology, color and texture characteristics of grains has been used for various applications in the grain industry, including grain quality assessment and wheat classification. Various grading systems based on image processing have been studied. The presence of various impurities at the time of wheat harvest is one of the important factors in reducing the quality of wheat, so it seems necessary to detect impurities in wheat grain. The quality of wheat has a significant effect on its marketability. In addition, if wheat is used as a crop seed, the impurities in the mass will be a determining factor in the yield of the future crop.

    Methodology

    In statistical analysis of data, situations are sometimes encountered in which the relationship between problem variables is very complex. This makes it difficult to analyze and process the data, so that sometimes no definite relationship can be found between the variables. In these cases, instead of purely theoretical research, applied research is done. Artificial neural networks are one of the solutions that, by processing experimental data, discover the knowledge or law behind the data, and transfer it to the network structure. In this study, the possibility of identifying wheat in wheat grain mass and estimating the amount of impurities in the mass, based on video processing using two types of artificial neural network (ANN) algorithms and hybrid genetic algorithm (GA) has been investigated. For this study, the code related to the artificial neural network with two hidden layers and the number of different neurons in each layer was written in MATLAB software. This code was used to identify and classify each component in the wheat grain mass. The main task of ANN is to learn the structure of the model data set. To achieve this, the network is trained with examples of related outcomes to generalize the capability. Multilayer artificial neural networks (MLPs) are the most common ANN models. In the present study, to reduce the computational load and increase the accuracy of the results, as well as to save time, some parameters that can be changed in the genetic algorithm were extracted as a fixed number using trial and error method. Among these parameters is the number of layers in the main structure of the neural network.

    Results

    A hidden layer with a number of neurons 2 to 12 was used as an even number. It should be noted that the number of neurons above this amount of computational time increased dramatically and did not have much effect on classification accuracy. Another parameter in this field is the Max Reproduction factor (Max Generation) which according to the results of trial and error for this factor, the results showed that increasing this value more than 30 has little effect on classification accuracy and decreases the mean squared error. And only increases the computation time, so a constant value of 30 was considered for this parameter. 4 values of 50, 100, 150 and 200 were used for the Pop Size parameter. Values above 200 dramatically increased computational volume and processing time, so values over 200 were omitted. Values less than 50 also reduced classification accuracy, and values less than 50 were excluded from the analysis process. After preparing the video of mass movement on the conveyor belt, using MATLAB software and image processing toolbox, 17 shape features, 12 color features and 6 texture features were extracted from each grain sample in the image. The data obtained from the image processing section were classified into five categories: wheat, barley, oats, straw and weed seeds. Two types of artificial neural network (ANN) algorithms, feeder (newff) and feeder (newcf), and hybrid genetic algorithm (GA) were used to achieve the highest classification accuracy and minimum error.

    Conclusion

    Techniques related to image segmentation were used to separate objects within the image. In this stage of image processing, an attempt is made to separate interconnected objects using a variety of morphological and color methods in the image. In fact, the purpose of separating interconnected objects in the image is to make it possible to examine the individual objects in the image separately and extract the different characteristics of each of them. The results showed that from 36 different artificial neural network (ANN) structures, the 5-4-10-35 structure for the newff algorithm with 100 and 89.74% accuracy for training and testing conditions, respectively, with a processing time of 10.39 seconds and the structure 5-8-10-35 for newcf algorithm was obtained with 100% accuracy for training conditions and 87.17% for test conditions with a processing time of 44.94 seconds. On the other hand, the results of the hybrid GA algorithm showed the highest classification accuracy with 95.55% and 86.66% for training and testing, respectively, in a structure in which 8 neurons in the hidden layer with a population size of 200 were used. Was obtained. According to the obtained results, the use of video processing using ANN artificial neural network and newff algorithm due to high accuracy and lower computation time is a powerful tool for detecting impurities in wheat grain mass. Therefore, the use of artificial neural network with the help of video processing has the ability to classify wheat grains and can be used in a practical way. Given the importance of grain mass velocity in the discussion of industrial application, it is suggested that higher grain mass velocities be investigated in a similar way.

    Keywords: Wheat, Artificial Neural Network, Genetic Algorithm, Impurity Detection
  • سعید آقاعزیزی، یوسف عباسپور گیلانده، محمدحسین کیانمهر، منصور راسخ*

    طراحی بهینه برای فرآیندهای سورتینگ، درجه بندی و سایر عملیات پس از برداشت محصولات کشاورزی نیازمند داشتن اطلاعات مناسب در مورد خواص فیزیکی آنهاست. همچنین دستیابی به محصولی با کمیت و کیفیت بالا نیازمند مبارزه با علف های هرز و جداسازی ناخالصی های موجود در محصول است. از این رو در پژوهش حاضر برخی از خواص فیزیکی گندم و جو اندازه گیری شد. همچنین از یک جداکننده وزنی برای جدا کردن جو موجود در توده گندم استفاده شد. دستگاه مذکور دارای پنج پارامتر قابل تنظیم سرعت هوا، دامنه نوسان، فرکانس نوسان، شیب طولی و شیب عرضی میز بود که تاثیر این پارامترها در قالب دو آزمایش فاکتوریل در طرح پایه کاملا تصادفی برای دستیابی به حداکثر جداسازی جو از توده گندم مورد بررسی قرار گرفت. نتایج نشان داد در شرایط سرعت هوای m/s 75/6، دامنه نوسان mm 5، شیب طولی °5/2، شیب عرضی °75/0 و فرکانس نوسان cycl/min 395 حداکثر جداسازی جو از گندم به میزان 6/20 درصد حاصل شد. در اغلب موارد با افزایش شیب عرضی میز از °75/0 تا °25/2 و شیب طولی میز از °5/2 تا °5/4 و همچنین با افزایش فرکانس تا 435 سیکل بر دقیقه مقدار جداسازی جو از توده گندم کاهش پیدا می کند. همچنین کمترین مقدار جداسازی جو از گندم در شرایط فرکانس نوسان cycl/min 455، شیب طولی °5/4، شیب عرضی °5/1، دامنه نوسان mm 5 و سرعت هوای m/s 6 برابر با 417/9 درصد بدست آمد.

    کلید واژگان: گندم, جو, جداکننده میز وزنی, خواص فیزیکی
    Saeed AgaAzizi, yousef Abbaspour-gilandeh, MohammadHosain kianmehr, Mansour Rasekh*

    Optimal design for sourcing, grading and other post-harvest operations requires the availability of appropriate information about their physical properties. Also, achieving a high quality product requires the fight against weeds and impurities in the product. Therefore, in this research, some physical properties of wheat and barley were measured. A gravity separator was also used to separate the barley in the wheat mass. This machine has five customizable parameters includes air velocity, frequency of oscillation, amplitude of oscillation, longitudinal slope and latitudinal slope of the table. The effect of these parameters was investigated in the form of two factorial experiments in a completely randomized design to achieve maximum separation of barley from wheat mass. The results of experiments showed that in the conditions of air velocity of 6.75 m / s, the oscillation amplitudes of 5 mm, the longitudinal slope of 2.5 degree, the latitudinal slope 0.75 degree and the frequency of oscillation of 395 cycl / min, the maximum separation of barley from wheat mass to 20.6 % was achieved. In most cases, with increasing latitudinal slope from 0.75 degree to 2.52 degree , the longitudinal slope of the table from 2.5 degree to 4.5 degree and with the increase of the frequency up to 435 cycl / min, the separation of barley from the mass of wheat decreases. Also, the minimum amount of barley separation from wheat mass in condition of oscillation frequency of 455 cycl / min, l o n g i t u d i n a l slope of 4.5 degree, latitud in a l lope of 1.5 degree, oscillation a mplitude of 5 mm and air velocity of 6 m/s was obtained 9.417 %.

    Keywords: Wheat, barley, gravity separator, physical properties
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال