به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب

mohammadreza etebari

  • محمدرضا اعتباری، ناصر فقهی فرهمند*، سلیمان ایران زاده
    هدف

    عدم توانایی بانک ها در اعتبارسنجی و ارزیابی مالی مشتریان و پیش بینی دقیق ریسک اعتباری تسهیلات گیرندگان، تاثیرات مخربی بر سیستم مالی جهانی و فعالیت های اقتصادی داشته و از اصلی ترین دلایل بحران های مالی جهانی در سال های اخیر بوده اند. هدف این تحقیق، تدوین مدل پیش بینی اعتباری مشتریان حقوقی بانک های خصوصی با بهره گیری از الگوریتم های فراابتکاری در شعبه های بانک پاسارگاد شمال غرب کشور بوده است.

    روش شناسی پژوهش

    این تحقیق براساس هدف پژوهش، توسعه ای و براساس روش انجام کار توصیفی می باشد. جامعه آماری این تحقیق را دو بخش خبرگان و مدیران بانکی استان آذربایجان شرقی و مشتریان حقوقی بانک پاسارگاد در شمال غرب کشور تشکیل می دهند. حجم نمونه آماری برای جامعه اول، 58 خبره بانکی استان اعم از مدیران، مسیولین اعتباری و روسای شعب با سابقه کار اعتباری بانک های خصوصی تعیین شده و برای جامعه دوم، براساس نمونه گیری هدفمند 427 مشتری حقوقی بانک پاسارگاد انتخاب شده است. به منظور جمع آوری داده ها از پرسشنامه و اسناد و مدارک بانک پاسارگاد بهره گرفته شده و روایی پرسشنامه به صورت روایی محتوا و براساس شاخص های نسبت روایی محتوا و شاخص روایی محتوا و پایایی پرسشنامه با استفاده از ضریب آلفای کرونباخ مورد بررسی و تایید قرار گرفته است. به منظور تجزیه و تحلیل داده ها از آزمون t، تحلیل عاملی تاییدی، شبکه عصبی مصنوعی چند لایه، شبکه عصبی آموزش دیده با الگوریتم ژنتیک، شبکه عصبی آموزش دیده با الگوریتم ازدحام ذرات و شبکه عصبی آموزش دیده با الگوریتم تکامل تفاضلی استفاده شده است.

    یافته‎ ها

    یافته های پژوهش نشان می دهد که هر چهار مدل فوق قادر به پیش بینی اعتباری مشتریان حقوقی بانک های خصوصی هستند و بهترین روش برای پیش بینی اعتباری مشتریان حقوقی بانک های خصوصی، شبکه عصبی آموزش دیده با الگوریتم تکامل تفاضلی با کمترین مقدار خطا نسبت به سه روش دیگر است.

    کلید واژگان: پیش بینی اعتباری, الگوریتم شبکه عصبی مصنوعی, الگوریتم ژنتیک, الگوریتم تکامل تفاضلی, الگوریتم ازدحام ذرات
    Mohammadreza Etebari, Naser Feghhi Farahmand *, Soleyman Iranzadeh
    Purpose

    Banks' inability to credit assessment and financial evaluation of customers and forecasting accurately the credit risk of borrowers has devastating effects on the global financial system and economic activity and have been the main causes of global financial crises in recent years.The purpose of this paper is to compile a credit forecasting model for legal customers of private banks by using meta-heuristic algorithms in the branches of Pasargad Bank in the northwest of Iran.

    Methodology

    This research is base on the purpose of developmental research and based on the method of performing descriptive work. The statistical population of this study is in two sections of banking experts and legal customers of Pasargad Bank in the northwest of the Iran. The statistical sample size for the first community of 58 banking experts including managers, credit officials and heads of branches in with credit work experience in private banks and for the second community, 427 legal clients were selected based on targeted sampling. In order to collect data in this research, a questionnaire and documents of Pasargad Bank have been used. The validity of the questionnaire was investigated as content validity and based on the indicators of content validity ratio and content validity index. The reliability of the questionnaire was assessed using Cronbach's alpha coefficient. In order to analyze the research data, t-test, confirmatory factor analysis, multilayer neural network, genetically trained neural network, trained neural network with particle swarm optimization and trained neural network with differential evolution will be used.

    Findings

     The research findings show that all four models are able to predict the credit predictions of the legal customers of private banks and the best way to predict the credit predictions of the legal customers of private banks is the neural network trained with differential evolution algorithm with the least amount of error compared to the other three methods.Originality/Value: In this research by using meta-heuristic algorithms, a new credit forecasting model produce for legal customers of private banks with the least amount of error.

    Keywords: Credit Forecasting, Neural Network Algorithm, Genetic Algorithm, Differential evolution algorithm, Particle Swarm Optimization Algorithm
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال