n. andareswari
-
BACKGROUND AND OBJECTIVESThe Belawan Harbor is the third largest port, which is located in an estuary, causing the port water area to be vulnerable to pollution, especially heavy metals. Conflicts between the community and the port authorities often occur due to pollution. Heavy metals are dangerous contaminants for waters, and total organic carbon in waters is needed but will cause eutrophication if the concentration is excessive in the environment. The level of heavy metal pollution in the waters of the Belawan Harbor and the factors that cause the pollution should be analyzed, because the level of heavy metal pollution has not been measured in the sediments of harbor waters. This study can be used as a reference for the actions of related agencies in dealing with heavy metal pollution in waters.METHODSSampling of sediments was performed at 10 locations, starting before the harbor activity began and moving toward the open sea. Sampling was conducted using Van Veen grab. Heavy metal concentrations were analyzed in the laboratory using the atomic absorption spectrometer method to assess the essential heavy metal copper and non-essential heavy metal lead, cadmium, and mercury. Heavy metal pollution in sediments was assessed by analyzing sediment pollution index. The multivariate statistical analysis on the relationship among factors was conducted using Pearson correlation matrix method, principal component analysis, and cluster analysis.FINDINGSThe environmental quality standards used indicate average concentration of heavy metals; lead (28,869 milligram per kilogram) and copper (8,003 milligram per kilogram) are below the quality standard. The mercury concentrations are undetectable (<0.00011 milligram per kilogram) at each station. By comparison, the concentration of cadmium (1,455 milligram per kilogram) exceeded the Interim Sediment Quality Guidelines from the Canadian Council of Ministers of the Environment. Results of the index analysis show that the average value of the pollution factor of copper is −0.177 (low contamination), that of lead is −1.433 (moderate contamination), and that of cadmium is −4.850 (high contamination); the geoaccumulation index value of copper is −5.328. (not polluted), that of lead is −0.190 (unpolluted), and that of cadmium −1.657 (moderately polluted). As mercury concentration in sediments is relatively low, it is not considered when calculating pollution levels. Overall, on the basis of a pollution index of 1.033 (1 < pollution load index ≤ 2), this condition indicates that the waters of the Belawan Harbor are categorized as not polluted to lightly polluted. The highest total organic carbon is at the estuaries of the Belawan and Deli Rivers. The sediment fraction is 72.2 percent sandy, 16.4 percent sludge, and 11.4 percent clay substrate.CONCLUSIONPollution in the waters of the Belawan Harbor is in the category of not polluted to slightly polluted. Although the pollution is still in the light category, this must be of particular concern to the relevant agencies, especially the local government, to make the right policies to overcome this pollution immediately. Pollution problems increase with the anthropogenic activities around coastal areas, as well as activities in the Belawan and Deli River watersheds, because the pollutant will flow from the upstream to the estuary area.Keywords: Belawan Harbor, Heavy metal, Multivariate statistical analysis, Sediment pollution index, Total organic carbon (TOC)
-
Global Journal of Environmental Science and Management, Volume:9 Issue: 4, Autumn 2023, PP 1019 -1032BACKGROUND AND OBJECTIVESThe monitoring of the Brantas watershed showed a light-polluted status. This study began by identifying the priority of regional problems using importance-performance analysis. Furthermore, a hydrological analysis was conducted to determine the pollutant area of the Brantas watershed by applying terrain analysis. When terrain analysis in hydrology is combined with participatory community information, it can provide valuable insights into water pollution and help prioritize remediation efforts. Integrating local knowledge with scientific data can improve decision-making and increase the effectiveness of water management strategies.METHODSThe methodological approach employed in this study included importance-performance analysis to determine priority problems in Batu City and terrain analysis as a hydrological analysis to determine the pollutant area in the Brantas watershed. The importance-performance analysis assessment data were obtained from 197 respondents representing the occupations of the people of Batu City. The terrain analysis data were derived from the surface elevation data in the form of a digital elevation model.FINDINGSAccording to the importance-performance analysis community assessment, urban trash management was one of the crucial yet low-rated features. The terrain analysis results demonstrated that business and industrial activities were distributed in locations with high flow accumulation values, indicating that the water pollution in Batu City was triggered by the presence of business and industrial activities in the watershed accumulation areas. Along the upstream Brantas watershed, 460 business and industrial activities were discovered. Therefore, the results of importance-performance analysis and terrain analysis had a correlation. They were also closely related to the assessment results of the contaminated Brantas watershed.CONCLUSIONThe following are some recommendations for the watershed's quality improvement: 1) cooperation among the Government, communities, and the private sector for addressing water pollution issues; 2) the development of environmentally friendly technologies in water treatment; and 3) education and outreach to communities about the importance of preserving water resources. As a city experiencing rapid urban development, environmental degradation constitutes a risk to be borne. Accordingly, Batu City must continue to develop good environmental management for the sake of nature conservation because the urban system is a unit formed by the social economy and ecological environment subsystem.Keywords: Community, Degradation, hydrology, Management, Strategy, Waste
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.