به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

nadia mohammadi dashtaki

  • Alireza Mirahmadizadeh, Fatemeh Baberi, Fatemeh Jafari, Nadia Mohammadi Dashtaki, Aboubakr Jafarnezhad
  • Nadia Mohammadi Dashtaki, Alireza Mirahmadizadeh, Mohammad Fararouei*, Reza Mohammadi Dashtaki, Mohammad Hoseini, Mohammadreza Nayeb
    Background

    Exposure to air pollution is a major health problem worldwide. This study aimed to investigate the effect of the level of air pollutants and meteorological parameters with their related lag time on the transmission and severity of coronavirus disease 19 (COVID-19) using machine learning (ML) techniques in Shiraz, Iran.

    Study Design:

     An ecological study.

    Methods

    In this ecological research, three main ML techniques, including decision trees, random forest, and extreme gradient boosting (XGBoost), have been applied to correlate meteorological parameters and air pollutants with infection transmission, hospitalization, and death due to COVID-19 from 1 October 2020 to 1 March 2022. These parameters and pollutants included particulate matter (PM2), sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), nitric oxide (NO), ozone (O3 ), carbon monoxide (CO), temperature (T), relative humidity (RH), dew point (DP), air pressure (AP), and wind speed (WS).

    Results

    Based on the three ML techniques, NO2 (lag 5 day), CO (lag 4), and T (lag 25) were the most important environmental features affecting the spread of COVID-19 infection. In addition, the most important features contributing to hospitalization due to COVID-19 included RH (lag 28), T (lag 11), and O3 (lag 10). After adjusting for the number of infections, the most important features affecting the number of deaths caused by COVID-19 were NO2 (lag 20), O3 (lag 22), and NO (lag 23).

    Conclusion

    Our findings suggested that epidemics caused by COVID-19 and (possibly) similarly viral transmitted infections, including flu, air pollutants, and meteorological parameters, can be used to predict their burden on the community and health system. In addition, meteorological and air quality data should be included in preventive measures.

    Keywords: Air Pollutants, Meteorological Factors, COVID-19, Machine Learning, Time Factors
  • Nadia Mohammadi Dashtaki, Mehrdad Hosseinpour, Mohammad Reza Maracy
    Background

    Congenital anomalies are among the causes of disability and death in infants. This study aimed to determine the incidence of major congenital anomalies (MCA) recorded at birth and also their relationship with some related factors in neonates born.

    Methods

    In this cross‑sectional study, all infants born from March 2016 to March 2017 in the hospitals of Chaharmahal and Bakhtiari Province were evaluated for MCA at birth. Information recorded in the medical file including parent and infant characteristics is extracted from the maternal and newborn electronic files. Data were analyzed using Generalized Linear Model with function of Poisson.

    Results

    Of the 19666 newborns studied, 63 (3.2 per 1000) had MCAs at birth. Variables such as number of pregnancies, parity, gestational age, neonatal birth weight, height, and head circumference were found to be significantly associated with MCA based on the crude model (P value < 0.05). Using adjusted model 1, the incidence of MCA was found to be significantly related to mother’s place of residency and her parity. Finally, in adjusted model 2, the incidence of MCA was found to be related to gestational age, neonatal birth weight, and head circumference.

    Conclusions

    In some MCA, early diagnosis and treatment can prevent disability. Consequently, the emphasis on public education to consider appropriate gestational age, proper nutrition before and during pregnancy, and prenatal care is necessary to inhibit MCA.

    Keywords: Incidence, Iran, major congenital anomalies, newborn, risk factors
  • Mehri Rejali, Nadia Mohammadi Dashtaki, Afshin Ebrahimi, Asieh Heidari, MohammadReza Maracy
    Background

    Climate change can facilitate the expansion of leishmaniasis and create the suitable habitat for vector and reservoir species. The objective of this study was to estimate the prevalence of cutaneous leishmaniasis (CL) at the climatic regions of Iran.

    Materials and Methods

    The literature search was conducted to identify all published studies reporting the prevalence or incidence of CL in humans in Iran. Atotal of 350 articles that reported leishmaniasis in Iran were retrieved, due to eligibility criteria, only 42 studies were selected to the final systematic review and meta‑analysis procedure. Random effects meta‑analysis was done with the estimate of heterogeneity being taken from an inverse‑variance model. Subgroup analysis was conducted and it stratified the studies according to climatic regions. Between‑study heterogeneity was assessed by using I2 and Cochran’s Q method I2 value of heterogeneity. Meta regression was used to investigate factors potentially contributed the between‑study heterogeneity.

    Results

    Individual studies showed that prevalence per 100,000 population estimated the range from 1.5 to 318.7 with the overall random pooled prevalence of 83.3 (95% confidence interval 74.5–92.1). Subgroup analysis by climatic regions showed that many studies were conducted in the desert areas and also, it has more prevalent than the other climatic regions.

    Conclusions

    Leishmaniasis was more prevalent in regions with dry and desert climates than the other climatic regions. One of the advantages of this work is that the majority of selected studies have been conducted on population‑base. However, some of the studies have been designed poorly or have had a lack of internal validity

    Keywords: Cutaneous leishmaniasis, human reservoirs, Iran, prevalence
  • نادیا محمدی دشتکی، مهرداد حسین پور، محمدرضا مرآثی*
    مقدمه

    ناهنجاری های مادرزادی، یکی از علل ناتوانی و مرگ نوزادان است. پژوهش حاضر به منظور تعیین میزان بروز ناهنجاری های مادرزادی عمده و ارتباط آن ها با برخی عوامل مرتبط در نوزادان در بدو تولد انجام شد.

    روش ها: 

    در این مطالعه مقطعی، تمام نوزادان متولد شده در بیمارستان های استان چهارمحال و بختیاری در سال 1395، از نظر وجود ناهنجاری مادرزادی عمده در بدو تولد مورد بررسی قرار گرفتند. اطلاعات ثبت شده در پرونده شامل مشخصات والدین و نوزاد بود که از سامانه مادر و نوزاد استخراج گردید. داده ها با استفاده از مدل خطی تعمیم یافته (Poisson regression) مورد تجزیه و تحلیل قرار گرفت.

    یافته ها:

     از 19666 نوزاد مورد بررسی، 63 نوزاد (2/3 در هزار) دچار ناهنجاری مادرزادی عمده در بدو تولد بودند. در مدل خام، ارتباط معنی داری بین متغیرهای سن جنینی نوزاد، وزن و قد نوزاد و دور سر نوزاد هنگام تولد با بروز ناهنجاری مادرزادی وجود داشت. در برازش مدل 1، ارتباط معنی داری بین محل سکونت با بروز ناهنجاری مادرزادی مشاهده شد و در برازش مدل 2، بروز ناهنجاری مادرزادی با سن جنینی نوزاد، وزن نوزاد و دور سر نوزاد هنگام تولد مرتبط بود.

    نتیجه گیری: 

    در تعدادی از ناهنجاری های مادرزادی، با تشخیص اولیه و درمان می توان از ایجاد ناتوانی و معلولیت پیشگیری کرد. بنابراین، تاکید بر آموزش همگانی جهت در نظر گرفتن سن مناسب بارداری، تغذیه مناسب قبل از بارداری و در دوران بارداری و تاکید بر مراقبت های قبل از بارداری و حین بارداری به منظور پیشگیری از بروز ناهنجاری های مادرزادی، الزامی به نظر می رسد.

    کلید واژگان: بروز, ناهنجاری مادرزادی آشکار, عوامل خطر, نوزاد, ایران
    Nadia Mohammadi Dashtaki, Mehrdad Hosseinpour, MohammadReza Maracy*
    Background

    Congenital malformations are one of the causes of infants disability and death. this study was performed to determine the incidence of major congenitals anomalies and their relationship with some related factors at birth.

    Methods

    In this cross-sectional study, all newborns born in hospitals of Chaharmahal va Bakhtiari province were evaluated for major congenital malformations at birth. information recorded in the case file including parent and infant characteristics was extracted from the mother and infant system. data were analyzed using Generalized Linear Model, family (poisson).

    Findings

    Of the 19666 newborns studied, 63 (3.2 per 1,000) had major congenital malformations at birth. in the crude model, pregnancy age, neonatal birth weight, neonatal height, and neonatal head circumference variables were significantly associated with congenital malformations. but in adjusted model 1, residence was significantly related to the incidence of congenital malformations and in adjusted model 2, the incidence of congenital malformations was related to neonatal pregnancy age, neonatal birth weight and neonatal head circumference.

    Conclusion

    Some of MCAs with early diagnosis and treatment can prevent disability. Therefore, the emphasis on public education to consider appropriate gestational age, proper nutrition before and during pregnancy, emphasis on prenatal and prenatal care is necessary to prevent congenital anomalies.

    Keywords: Incidence, Congenital malformation, Risk factors, Infant, Iran
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال