razieh solgi
-
BackgroundIn body tissues, tumors generally have different speeds of sound (SOS) than normal tissues. In this respect, ultrasound computed tomography (UCT) can generate a cross-sectional SOS map as an innovative ultrasound imaging method. This technique can produce images with a resolution of millimeters and a high signal-to-noise ratio.ObjectiveThis study aimed to improve UCT image quality without increasing breast cancer screening and diagnosis time.Material and MethodsIn this analytical study, a ring-shaped UCT breast imaging system was simulated using the K-wave toolbox of MATLAB. The system has a 20 cm diameter and 256 ultrasonic piezoelectrics placed in the ring’s circumference. Different beamforming techniques imaged two designed phantoms (i.e., resolution and contrast), and the resolution and contrast to noise ratio (CNR) were calculated.ResultsThe results of resolution phantom imaging without any beamforming showed that only bars with the value of 0.125 and 0.167 lp/mm were distinguishable, and the 0.1 bars were not recognizable in the imaging. In addition, increasing the number of transmitters led to no noticeable change in resolution for 0.125 and 0.167 lp/mm bars. In all beamforming techniques for imaging the contrast phantom, the CNR parameter up to an object with a diameter of 8 mm increases with increasing diameter without any change.ConclusionThe beamforming technique using three simultaneous transmitters improved the resolution by about 1 mm compared to the normal strategy. In addition to high-contrast images, beamforming with 9 simultaneous transmitters led to a preferable techniqueKeywords: Beamforming, Fan Beam Back Projection, Image Quality Enhancement, Image reconstruction, Ultrasound Computed Tomography, Ultrasound Imaging, Signal-To-Noise Ratio, Ultrasonography, Tomography
-
Purpose
This study aimed at evaluating the image quality characteristics of advanced noise-optimized and traditional virtual monochromatic images compared with conventional 120-kVp images from second-generation Dual-Source CT.
Materials and MethodsFor spiral scans six syringes filled with diluted iodine contrast material (1, 2, 5, 10, 15, 20 mg I/ml) were inserted into the test phantom and scanned with a second-generation dual-source CT in both single-energy (120-kVp) and dual-energy modes. Images set contain conventional single-energy 120-kVp, and virtual monochromatic were reconstructed with energies ranging from 40 to 190-keV in 1-keV steps. An energy-domain noise reduction algorithm was applied and the mean CT number, image noise, and iodine CNR were calculated.
ResultsThe iodine CT number of conventional 120-kVp images compared with monochromatic of 40-, 50-, 60- and 70-keV images showed increase. The improvement ratio of image noise on Advanced Virtual Monochromatic Images (AVMIs) compared with the Traditional Virtual Monochromatic Images (TVMIs) at energies of 40-, 50-, 60, 70-keV was 52.9%, 35.7%, 8.1%, 2.1%, respectively. At AVMIs from 75- to 190-keV, the image noise value was less than conventional 120-kVp images. CNR improvement ratio at 20 mg/ml of iodinated contrast material for TVMIs and AVMIs compared to 120-kVp CT images and AVMIs compared to TVMI was 18.3% and 56.3%, 32.1% respectively.
ConclusionBoth TVMIs (in energies ranging from 54 to 71-keV) and AVMIs (in energies ranging from 40 to 74-keV) represent improvement in the iodine contrast-to-noise ratio than conventional 120-kVp CT images for the same radiation dose. Also, AVMIs compared to TVMIs have been obtained considerable noise reduction and CNR improvement for low-energy virtual monochromatic images. In the present study, we show that virtual monochromatic image and its Advanced version (AVMI) may boost the dual-energy CT advantages by providing higher CNR images in the same exposure value compared to routinely acquired single-energy CT images.
Keywords: Dual-Source Computed Tomography, Dual Energy Computed Tomography, Advanced VirtualMonochromatic Images, Traditional Virtual Monochromatic Images, Contrast-to-Noise Ratio -
Sound-speed images can be used for cancer detection and diagnosis. In soft tissues, tumors have generally different sound speeds than normal tissues. Improving ultrasound image quality and variety of imaged tissue properties should prove beneficial to breast cancer screening and diagnosis. The goal of this study is to compare the effect of five reconstruction filters on fan beam acquisition modes of ultrasound computed Tomography (UCT) and investigate the image quality parameters of the point spread function (PSF), modulate transform function (MTF) and spatial resolution for two different arrangements of ultrasonic array, ring-shaped and parallel shaped. These study results show that the spatial resolution affected by not only detector arrangement but also reconstruction filtersKeywords: fan beam back projection, image quality, reconstruction filters, ultrasound computed tomography
-
در مطالعات کلینیکی, مشخص کردن توزیع دما درون بافت سالم و نیز بافت تومورال در طی درمان هایپرترمیا دشوار است. از آن جایی که باحس گر های مرسوم دما تنها در تعداد محدودی مکان اندازه گیری می شود مطالعات شبیه سازی کمک می کند که پزشکان به درک بهتری از این روش درمانی دست پیدا کنند. در این مطالعه، سه مدل تومور دو بعدی بر اساس تصاویر توزیع های نانو ذره در تومورهای PC3، DU145 وLAPC4 در محیط COMSOL بازسازی شده اند. تصاویر پیش از وارد شدن در COMSOL در MATLAB پیش پردازش می شوند. مدل توزیع یکنواخت به عنوان گروه کنترل اضافه می شود. توزیع دما، دمای ماکزیمم، زمان رسیدن به حالت ثابت ، CEM43 ، دوز هم اثر و شار گرما در مرز بافت- تومور برای ارزیابی اثر توزیع نانو ذره بر درمان هایپرترمیا آنالیز شده است. نتایج نشان می دهند که در توان گرمایی پایین توزیع چگال تر نانوذره اثر بهتری از توزیع یکنواخت در آسیب به بافت ناسالم دارد. اما در توان های گرمایی بالا توزیع یکنواخت است که عملکرد بهتری نسبت به توزیع چگال دارد. برای توزیع های چگال نانوذره, جایی که نانوذرات متمرکز می شوند بر پارامترهای گرمایی تاثیرمی گذارد از جمله بر شار گرما در مرز بین تومور – بافت سالم. هر چه تمرکز نانوذرات به مرکز تومور نزدیک تر باشد اثر بخشی درمان بیشتر است.
کلید واژگان: شبیه سازی, کامسول, نانوذره مغناطیسی, _ هایپرترمیا موضوعاتSimulation of Nanoparticle-Mediated Hyperthermia Inside Homogenous tissue in External Magnetic fieldIn clinical studies, it is difficult to determine the temperature distribution throughout both tumor and normal tissue during hyperthermia treatment, since temperatures are sampled at only a limited number of locations with conventional sensors. Simulation studies can help physicians understand better the effects of the treatment. In this study, three 2D tumor models are built in the COMSOL software environment based on the images of nano-particle distributions in sliced PC3, DU145 and LAPC4 tumors. The images are pre-processed in MATLAB before being imported into COMSOL. A uniform distribution model is added as a control group. Temperature distribution, maximum temperature, time to reach steady state, CEM43, iso-effective dose and heat flux at tumor-tissue boundary are analyzed to evaluate the effect of the nano particle distribution on hyperthermia treatment. The results indicate that a more concentrated nano-particle distribution is better in damaging diseased tissue than the uniform distribution under low heating power .A more uniform distribution is better than the concentrated distribution under high heating power. For concentrated nanoparticle distributions, the location where the nanoparticles are concentrated influences tissue damage: a more centered one has a better effect. Tumor tissue is more likely to be defective.
Keywords: Simulation, Comsol, Magnetic Nano Particle, Hyperthermia
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.